Ion-size effects on cuprate High Temperature Superconductors

2021 ◽  
Author(s):  
◽  
Benjamin Patrick Pennington Mallett

<p>The cuprates are a family of strongly electronically-correlated materials which exhibit high-temperature superconductivity. There has been a vast amount of research into the cuprates since their discovery in 1986, yet despite this research effort, the origins of their electronic phases are not completely understood. In this thesis we focus on a little known paradox to progress our understanding of the physics of these materials.   There are two general ways to compress the cuprates, by external pressure or by internal pressure as induced by isovalent-ion substitution. Paradoxically, they have the opposite effect on the superconducting transition temperature. This thesis seeks to understand the salient difference between these two pressures.  We study three families of cuprates where the ion size can be systematically altered; Bi₂(Sr₁.₆₋xAx)Ln₀.₄CuO₆₊δ, ACuO₂ and LnBa₂−xSrxCu₃O₇₋δ where Ln is a Lanthenide or Y and A={Mg,Ca,Sr,Ba}. We utilise a variety of techniques to explore different aspects of our paradox, for example; Raman spectroscopy to measure the antiferromagnetic superexchange energy and energy gaps, Density Functional Theory to calculate the density of states, Muon Spin Relaxation to measure the superfluid density as well as a variety of more conventional techniques to synthesize and characterise our samples.  Our Raman studies show that an energy scale for spin fluctuations cannot resolve the different effect of the two pressures. Similarly the density of states close to the Fermi-energy, while an important property, does not clearly resolve the paradox. From our superfluid density measurements we have shown that the disorder resulting from isovalent-ion substitution is secondary in importance for the superconducting transition temperature.  Instead, we find that the polarisability is a key property of the cuprates with regard to superconductivity. This understanding resolves the paradox! It implies that electron pairing in the cuprates results from either (i) a short-range interaction where the polarisability screens repulsive longer-range interactions and/or (ii) the relatively unexplored idea of the exchange of quantized, coherent polarisation waves in an analogous fashion to phonons in the conventional theory of superconductivity. More generally, we have also demonstrated the utility of studying ion-size effects to further our collective understanding of the cuprates.</p>

2021 ◽  
Author(s):  
◽  
Benjamin Patrick Pennington Mallett

<p>The cuprates are a family of strongly electronically-correlated materials which exhibit high-temperature superconductivity. There has been a vast amount of research into the cuprates since their discovery in 1986, yet despite this research effort, the origins of their electronic phases are not completely understood. In this thesis we focus on a little known paradox to progress our understanding of the physics of these materials.   There are two general ways to compress the cuprates, by external pressure or by internal pressure as induced by isovalent-ion substitution. Paradoxically, they have the opposite effect on the superconducting transition temperature. This thesis seeks to understand the salient difference between these two pressures.  We study three families of cuprates where the ion size can be systematically altered; Bi₂(Sr₁.₆₋xAx)Ln₀.₄CuO₆₊δ, ACuO₂ and LnBa₂−xSrxCu₃O₇₋δ where Ln is a Lanthenide or Y and A={Mg,Ca,Sr,Ba}. We utilise a variety of techniques to explore different aspects of our paradox, for example; Raman spectroscopy to measure the antiferromagnetic superexchange energy and energy gaps, Density Functional Theory to calculate the density of states, Muon Spin Relaxation to measure the superfluid density as well as a variety of more conventional techniques to synthesize and characterise our samples.  Our Raman studies show that an energy scale for spin fluctuations cannot resolve the different effect of the two pressures. Similarly the density of states close to the Fermi-energy, while an important property, does not clearly resolve the paradox. From our superfluid density measurements we have shown that the disorder resulting from isovalent-ion substitution is secondary in importance for the superconducting transition temperature.  Instead, we find that the polarisability is a key property of the cuprates with regard to superconductivity. This understanding resolves the paradox! It implies that electron pairing in the cuprates results from either (i) a short-range interaction where the polarisability screens repulsive longer-range interactions and/or (ii) the relatively unexplored idea of the exchange of quantized, coherent polarisation waves in an analogous fashion to phonons in the conventional theory of superconductivity. More generally, we have also demonstrated the utility of studying ion-size effects to further our collective understanding of the cuprates.</p>


1988 ◽  
Vol 02 (05) ◽  
pp. 567-575 ◽  
Author(s):  
A. N. Das ◽  
P. Choudhury ◽  
B. Ghosh

Superconductivity in a nearly half-filled Hubbard model with large on-site repulsion has been studied following the Hubbard's approximation. At T = 0, the Fermi energy touches the top of the lower Hubbard subband for n = 1, one electron per site in the system. For a particular density of states, sharply peaked at the centre of the band, the superconducting transition temperature is zero for n = 1 (zero hole concentration) and becomes maximum at a hole concentration of 1/3. The high temperature thermoelectric power of the oxide superconductors has been discussed, which indicates the strong correlation in the system.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5830
Author(s):  
Andrzej Ślebarski ◽  
Maciej M. Maśka

We investigated the effect of enhancement of superconducting transition temperature Tc by nonmagnetic atom disorder in the series of filled skutterudite-related compounds (La3M4Sn13, Ca3Rh4Sn13, Y5Rh6Sn18, Lu5Rh6Sn18; M= Co, Ru, Rh), where the atomic disorder is generated by various defects or doping. We have shown that the disorder on the coherence length scale ξ in these nonmagnetic quasiskutterudite superconductors additionally generates a non-homogeneous, high-temperature superconducting phase with Tc⋆>Tc (dilute disorder scenario), while the strong fluctuations of stoichiometry due to increasing doping can rapidly increase the superconducting transition temperature of the sample even to the value of Tc⋆∼2Tc (dense disorder leading to strong inhomogeneity). This phenomenon seems to be characteristic of high-temperature superconductors and superconducting heavy fermions, and recently have received renewed attention. We experimentally documented the stronger lattice stiffening of the inhomogeneous superconducting phase Tc⋆ in respect to the bulk Tc one and proposed a model that explains the Tc⋆>Tc behavior in the series of nonmagnetic skutterudite-related compounds.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
P. Tong ◽  
Y. P. Sun

The superconductivity in antiperovskite compound MgCNi3was discovered in 2001 following the discovery of the superconducting MgB2. In spite of its lower superconducting transition temperature (8 K) than MgB2(39 K), MgCNi3has attracted considerable attention due to its high content of magnetic element Ni and the cubic structure analogous to the perovskite cuprates. After years of extensive investigations both theoretically and experimentally, however, it is still not clear whether the mechanism for superconductivity is conventional or not. The central issue is if and how the ferromagnetic spin fluctuations contribute to the cooper paring. Recently, the experimental results on the single crystals firstly reported in 2007 trend to indicate a conventionals-wave mechanism. Meanwhile many compounds neighboring to MgCNi3were synthesized and the physical properties were investigated, which enriches the physics of the Ni-based antiperovskite compounds and help understand the superconductivity in MgCNi3. In this paper, we summarize the research progress in these two aspects. Moreover, a universal phase diagram of these compounds is presented, which suggests a phonon-mediated mechanism for the superconductivity, as well as a clue for searching new superconductors with the antiperovskite structure. Finally, a few possible scopes for future research are proposed.


1994 ◽  
Vol 50 (18) ◽  
pp. 13778-13785 ◽  
Author(s):  
Charles C. Kim ◽  
A. R. Drews ◽  
E. F. Skelton ◽  
S. B. Qadri ◽  
M. S. Osofsky ◽  
...  

1987 ◽  
Vol 01 (02) ◽  
pp. 409-412 ◽  
Author(s):  
Jinghui Ruan ◽  
Jizhou Li ◽  
Ansun Yu ◽  
Shu Gan ◽  
Tonghua Yang ◽  
...  

The generalized phonon density of states of Y-Ba-Cu-O superconductor and semiconductor has been measured by neutron inelastic scattering method. The results show that the decrease or disappearance of high frequency modes and the increase of low frequency modes may have some relations to the high superconducting transition temperature


1987 ◽  
Vol 99 ◽  
Author(s):  
D. C. Cronemeyer ◽  
A. P. Malozemoff ◽  
T. R. Mcguire

ABSTRACTWe report ultra-low-field (5 mOe - 1 Oe) magnetic measurements on a ceramic sample of YBaCuO. A positive remanent moment is observed which accurately equals the difference of the field-cooled and zero-field-cooled moments throughout the temperature range. At higher fields this relationship breaks down. A reversible region is observed near the superconducting transition temperature which is independent of field. These results are discussed in the context of recent models.


2021 ◽  
Vol 23 (11) ◽  
pp. 6717-6724
Author(s):  
Mingyang Du ◽  
Zihan Zhang ◽  
Hao Song ◽  
Hongyu Yu ◽  
Tian Cui ◽  
...  

The contribution of optical and acoustic modes to the superconducting transition temperature. The calculated EPC parameter λ, critical temperature (Tc), critical temperature caused by the interaction of electrons with optical phonons (T0c) and acoustic phonons (Tacc).


Sign in / Sign up

Export Citation Format

Share Document