scholarly journals The Market for Electric Vehicles in New Zealand: Using stated choice methods to evaluate the implications for electricity demand and carbon emissions to 2030

2021 ◽  
Author(s):  
◽  
Douglas George Clover

<p>Anthropogenic global climate change caused by the emissions of greenhouse gases (GHGs) from the combustion of fossil fuels is one of the greatest environmental threats faced by society. Electric vehicles (EVs), which use lithium-ion battery technology, have been proposed as a means of reducing GHG emissions produced by light passenger vehicles (LPVs). The ability of this vehicle technology to assist in reducing GHG emissions will depend on the market uptake and the effect that a growing EV fleet has on the GHG emissions produced by the electricity sector.   This thesis is the first use of stated choice methods in New Zealand to develop a vehicle demand model that takes detailed account of car buyers’ preferences for EV purchase price, driving range, performance, fuel and battery costs, and charging network availability.  A nationwide stated choice survey of New Zealand car buyers was undertaken in 2010 (n=281). The data from the survey was used to estimate a mixed multinomial logit discrete choice model, which was linked to a vehicle stock model of the New Zealand LPV fleet developed for this research. These two models were then used to simulate the New Zealand vehicle stock and energy demand, and the LPV fleet’s GHG emissions over a twenty year period.  The Electricity Commission’s mixed integer programming ‘generation expansion model’ (GEM) was used to take account of the additional GHG emissions produced by the electricity sector in response to meeting the electricity demand estimates from the vehicle stock model.  The results of this study indicate that, assuming the current state of EV technology and only modest reductions in EV prices over the modelling period, there would be sufficient demand for EVs to reduce, by 2030, the annual GHG emissions produced by the LPV fleet to approximately 80% of levels emitted in 2010. Changes in technology or vehicle design that reduce the cost of batteries and the purchase price of EVs would have the greatest impact in increasing the demand for these vehicles, and would further reduce the GHG emissions produced by the LPV fleet.  The electricity sector modelling indicates that less than 730 MW of additional generation capacity will be required to be built if network operators can prevent EVs from charging during periods of peak demand, but without this capability, up to 4,400 MW of additional generation capacity could be required. The modelling also indicates that a policy environment where the use of coal-fuelled electricity generation is permitted and the price of carbon limited to $25 per tonne, the increased electricity sector GHG emissions that would result offset 88% of the cumulative GHG emission reductions achieved by the introduction of EVs into the LPV fleet. A policy raising the price of carbon to $100 per tonne would reduce the offsetting effect to 30%.  EVs are an emerging technology with considerable potential for further development. The results of this study indicate that even at current prices and levels of technological performance, EVs have the capacity to make a significant contribution to New Zealand’s efforts to reduce GHG emissions. However, the ability to realise this potential is dependent on vehicle manufacturers’ willingness to produce EVs in sufficient quantities and models so that they can fully compete in the market with internal combustion engine vehicles; and on policies that discourage the future use of coal-fuelled electricity generation.</p>

2021 ◽  
Author(s):  
◽  
Douglas George Clover

<p>Anthropogenic global climate change caused by the emissions of greenhouse gases (GHGs) from the combustion of fossil fuels is one of the greatest environmental threats faced by society. Electric vehicles (EVs), which use lithium-ion battery technology, have been proposed as a means of reducing GHG emissions produced by light passenger vehicles (LPVs). The ability of this vehicle technology to assist in reducing GHG emissions will depend on the market uptake and the effect that a growing EV fleet has on the GHG emissions produced by the electricity sector.   This thesis is the first use of stated choice methods in New Zealand to develop a vehicle demand model that takes detailed account of car buyers’ preferences for EV purchase price, driving range, performance, fuel and battery costs, and charging network availability.  A nationwide stated choice survey of New Zealand car buyers was undertaken in 2010 (n=281). The data from the survey was used to estimate a mixed multinomial logit discrete choice model, which was linked to a vehicle stock model of the New Zealand LPV fleet developed for this research. These two models were then used to simulate the New Zealand vehicle stock and energy demand, and the LPV fleet’s GHG emissions over a twenty year period.  The Electricity Commission’s mixed integer programming ‘generation expansion model’ (GEM) was used to take account of the additional GHG emissions produced by the electricity sector in response to meeting the electricity demand estimates from the vehicle stock model.  The results of this study indicate that, assuming the current state of EV technology and only modest reductions in EV prices over the modelling period, there would be sufficient demand for EVs to reduce, by 2030, the annual GHG emissions produced by the LPV fleet to approximately 80% of levels emitted in 2010. Changes in technology or vehicle design that reduce the cost of batteries and the purchase price of EVs would have the greatest impact in increasing the demand for these vehicles, and would further reduce the GHG emissions produced by the LPV fleet.  The electricity sector modelling indicates that less than 730 MW of additional generation capacity will be required to be built if network operators can prevent EVs from charging during periods of peak demand, but without this capability, up to 4,400 MW of additional generation capacity could be required. The modelling also indicates that a policy environment where the use of coal-fuelled electricity generation is permitted and the price of carbon limited to $25 per tonne, the increased electricity sector GHG emissions that would result offset 88% of the cumulative GHG emission reductions achieved by the introduction of EVs into the LPV fleet. A policy raising the price of carbon to $100 per tonne would reduce the offsetting effect to 30%.  EVs are an emerging technology with considerable potential for further development. The results of this study indicate that even at current prices and levels of technological performance, EVs have the capacity to make a significant contribution to New Zealand’s efforts to reduce GHG emissions. However, the ability to realise this potential is dependent on vehicle manufacturers’ willingness to produce EVs in sufficient quantities and models so that they can fully compete in the market with internal combustion engine vehicles; and on policies that discourage the future use of coal-fuelled electricity generation.</p>


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2920
Author(s):  
Gail Helen Broadbent ◽  
Graciela Isabel Metternicht ◽  
Thomas Oliver Wiedmann

Actions to reduce greenhouse gas emissions are required from all actors. Adopting plug-in electric vehicles (EV) would reduce light motor vehicle travel emissions, a significant and rising emissions source. To encourage EV uptake, many governments have implemented policies which may be less effective than desired. Using New Zealand as a case study, we surveyed private motorists. The results show that consumers are heterogeneous, with varying car-buying motivations, perceptions, attitudes to EVs and awareness of policies. Uniquely, we segmented motorists into four attitudinal groups to ascertain characteristics potentially affecting EV readiness to provide evidence to improve policies and aid social marketing. Our results show the next-most-ready to buy EVs are early mainstream consumers—designated the EV Positives—who were most concerned about vehicle range, perceptions of EV expense, charging-related inconvenience and the unknown value proposition of batteries, and were relatively unaware of incentives compared to EV Owners. The EV Positives favored incentives designed to effect purchase price reductions and increase nation-wide fast-charger deployment. To increase awareness of EVs and shift perceptions of EV expense and inconvenience, we suggest policies that potentially increase EV adoption rates and suggest reframing the language to appeal to EV Positives through information programs. Increasing EV procurement by organizations could increase opportunities for positive information dissemination via employees.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 834 ◽  
Author(s):  
Siqin Xiong ◽  
Junping Ji ◽  
Xiaoming Ma

Battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs) are seen as the most promising alternatives to internal combustion vehicles, as a means to reduce the energy consumption and greenhouse gas (GHG) emissions in the transportation sector. To provide the basis for preferable decisions among these vehicle technologies, an environmental benefit evaluation should be conducted. Lithium iron phosphate (LFP) and lithium nickel manganese cobalt oxide (NMC) are two most often applied batteries to power these vehicles. Given this context, this study aims to compare life cycle energy consumption and GHG emissions of BEVs and PHEVs, both of which are powered by LFP and NMC batteries. Furthermore, sensitivity analyses are conducted, concerning electricity generation mix, lifetime mileage, utility factor, and battery recycling. BEVs are found to be less emission-intensive than PHEVs given the existing and near-future electricity generation mix in China, and the energy consumption and GHG emissions of a BEV are about 3.04% (NMC) to 9.57% (LFP) and 15.95% (NMC) to 26.32% (LFP) lower, respectively, than those of a PHEV.


2012 ◽  
Vol 622-623 ◽  
pp. 1104-1107
Author(s):  
Sureeporn Meehom ◽  
Wipanan Iaprasert ◽  
Thanatchai Kulworawanichpong

Electricity is a pre-requisite for technological progress and economy growth. Thailand has been facing an electric energy crisis in inadequate electricity generation capacity compared with the demand. It is essential to replace the conventional energy (e.g. fossil fuels) and electricity import with renewable energy resources, particularly biogas that can be play a major role to meet the electricity demand. This paper explores the current state of biogas energy potential from livestock manures in Nakhonratchasima, Thailand. The results show a potential of electricity produced from animal manures of cattle, buffalo, swine and poultry. The total annual recoverable rates of livestock manures and biogas yield in Nakhonratchasima Province are 431.334 Mtonne of dry matter and 119,631 Mm3, respectively. In energy terms, the annual amount of the recoverable biogas resources is equivalent to 2,691.691 PJ or 748 TWh. This total amount of available biogas energy potential can meet anticipated electricity demand. Therefore, the assessment of biogas energy resources will make a significant utilization of energy management in the future.


2007 ◽  
Vol 6 (1) ◽  
pp. 65
Author(s):  
E. F. Jaguaribe ◽  
P. C. Lobo ◽  
W. L. De Souza ◽  
R. M. Rocha ◽  
E. T. Nascimento

Over the past decade, electricity consumption in Brazil grew faster than generation capacity. This situation obliged an urgent return to investment in the sector, and revitalization of the restructuring in the national electricity sector. In these circumstances, the use of renewable energy sources, such the biomass, became an option for decentralized electricity generation. Sugar cane bagasse is one of the most important biomasss residues for electricity generation. The present publication analyses an investment made in the expansion of the energy cogeneration system in an industry that produces sugar and alcohol, from sugar cane, considering the seasonal bagasse price, energy generation costs and a 10 year period. With the new cogeneration system the factory became self-sufficient in energy, with a saleable surplus of 21,240 MWh, at an average power of 4,000 kW. However, an economic analysis indicated that the best option would have been to maintain the original system and sell surplus bagasse at R$ 26.00/t.


2000 ◽  
Vol 1719 (1) ◽  
pp. 165-174 ◽  
Author(s):  
Peter R. Stopher ◽  
David A. Hensher

Transportation planners increasingly include a stated choice (SC) experiment as part of the armory of empirical sources of information on how individuals respond to current and potential travel contexts. The accumulated experience with SC data has been heavily conditioned on analyst prejudices about the acceptable complexity of the data collection instrument, especially the number of profiles (or treatments) given to each sampled individual (and the number of attributes and alternatives to be processed). It is not uncommon for transport demand modelers to impose stringent limitations on the complexity of an SC experiment. A review of the marketing and transport literature suggests that little is known about the basis for rejecting complex designs or accepting simple designs. Although more complex designs provide the analyst with increasing degrees of freedom in the estimation of models, facilitating nonlinearity in main effects and independent two-way interactions, it is not clear what the overall behavioral gains are in increasing the number of treatments. A complex design is developed as the basis for a stated choice study, producing a fractional factorial of 32 rows. The fraction is then truncated by administering 4, 8, 16, 24, and 32 profiles to a sample of 166 individuals (producing 1, 016 treatments) in Australia and New Zealand faced with the decision to fly (or not to fly) between Australia and New Zealand by either Qantas or Ansett under alternative fare regimes. Statistical comparisons of elasticities (an appropriate behavioral basis for comparisons) suggest that the empirical gains within the context of a linear specification of the utility expression associated with each alternative in a discrete choice model may be quite marginal.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1577
Author(s):  
Albert Hiesl ◽  
Jasmine Ramsebner ◽  
Reinhard Haas

Battery-powered electric mobility is currently the most promising technology for the decarbonisation of the transport sector, alongside hydrogen-powered vehicles, provided that the electricity used comes 100% from renewable energy sources. To estimate its electricity demand both nationwide and in individual smaller communities, a calculation based assessment on driving profiles that are as realistic as possible is required. The developed model based analysis presented in this paper for the creation of driving and thus electricity load profiles makes it possible to build different compositions of driving profiles. The focus of this paper lies in the analysis of motorised private transport, which makes it possible to assess future charging and load control potentials in a subsequent analysis. We outline the differences in demand and driving profiles for weekdays as well as for Saturdays, Sundays and holidays in general. Furthermore, the modelling considers the length distribution of the individual trips per trip purpose and different start times. The developed method allows to create individual driving and electric vehicle (EV) demand profiles as well as averaged driving profiles, which can then be scaled up and analysed for an entire country.


Sign in / Sign up

Export Citation Format

Share Document