scholarly journals Comparative Life Cycle Energy and GHG Emission Analysis for BEVs and PhEVs: A Case Study in China

Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 834 ◽  
Author(s):  
Siqin Xiong ◽  
Junping Ji ◽  
Xiaoming Ma

Battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs) are seen as the most promising alternatives to internal combustion vehicles, as a means to reduce the energy consumption and greenhouse gas (GHG) emissions in the transportation sector. To provide the basis for preferable decisions among these vehicle technologies, an environmental benefit evaluation should be conducted. Lithium iron phosphate (LFP) and lithium nickel manganese cobalt oxide (NMC) are two most often applied batteries to power these vehicles. Given this context, this study aims to compare life cycle energy consumption and GHG emissions of BEVs and PHEVs, both of which are powered by LFP and NMC batteries. Furthermore, sensitivity analyses are conducted, concerning electricity generation mix, lifetime mileage, utility factor, and battery recycling. BEVs are found to be less emission-intensive than PHEVs given the existing and near-future electricity generation mix in China, and the energy consumption and GHG emissions of a BEV are about 3.04% (NMC) to 9.57% (LFP) and 15.95% (NMC) to 26.32% (LFP) lower, respectively, than those of a PHEV.

2019 ◽  
Vol 11 (9) ◽  
pp. 2527 ◽  
Author(s):  
Christos Ioakimidis ◽  
Alberto Murillo-Marrodán ◽  
Ali Bagheri ◽  
Dimitrios Thomas ◽  
Konstantinos Genikomsakis

This paper presents a life cycle assessment (LCA) study that examines a number of scenarios that complement the primary use phase of electric vehicle (EV) batteries with a secondary application in smart buildings in Spain, as a means of extending their useful life under less demanding conditions, when they no longer meet the requirements for automotive purposes. Specifically, it considers a lithium iron phosphate (LFP) battery to analyze four second life application scenarios by combining the following cases: (i) either reuse of the EV battery or manufacturing of a new battery as energy storage unit in the building; and (ii) either use of the Spanish electricity mix or energy supply by solar photovoltaic (PV) panels. Based on the Eco-indicator 99 and IPCC 2007 GWP 20a methods, the evaluation of the scenario results shows that there is significant environmental benefit from reusing the existing EV battery in the secondary application instead of manufacturing a new battery to be used for the same purpose and time frame. Moreover, the findings of this work exemplify the dependence of the results on the energy source in the smart building application, and thus highlight the importance of PVs on the reduction of the environmental impact.


Author(s):  
Leticia MENEGHEL FONSECA ◽  
Nawelle CHAOUKI ◽  
Anthony BENOIST ◽  
Guillaume BUSSET ◽  
Roland PIROT ◽  
...  

Jatropha curcas is an inedible oil crop which can grow under semiarid climatic conditions. Its oil can be used straight as fuel to provide energy in remote areas to improve living conditions. The aim of this study is to assess the environmental impacts of the electricity generation from Jatropha oil under West African conditions, by means of a Life Cycle Assessment (LCA). These potential impacts are calculated for four crop managements and compared to the ones of a reference electricity generation from conventional diesel. Data used in this work are from Jatropha plantations set up in Mali since 2006.LCA results show that the potential benefits of the Jatropha systems are highly dependent on the crop management, especially for the fertilization strategy and the promotion of the oilcake. However, in all cases, the Jatropha systems have lower impacts than the reference diesel system by 75% to 96% for abiotic depletion, and by 80% to 97% for ozone layer depletion, and higher impacts by 260% to 1000% for eutrophication, and by 26% to 160% for acidification. In the best case, the Jatropha system can also have lower impacts than the reference system by 76% for climate change, and by 88% for photochemical oxidation.A methodological originality of this work is the inclusion of animal and human labour into the LCA framework. A first model is proposed for the accounting of energy consumption and GreenHouse Gases (GHG) emissions due to labour. Concerning energy consumption, labour is not negligible with a share from 14% to 50% of the total impact of the Jatropha systems; however the highest share of 50% corresponds to the scenarios with the lowest energy demand. CH4 emissions from livestock are also not negligible but second-order in this study since they account for 2% to 13% of total GHG emissions.


2016 ◽  
Vol 847 ◽  
pp. 403-410 ◽  
Author(s):  
Qiang Lu ◽  
Peng Fei Wu ◽  
Wan Xia Shen ◽  
Xue Chao Wang ◽  
Bo Zhang ◽  
...  

Based on Life cycle assessment (LCA) methodology, this paper analyzes the total energy consumption and greenhouse gas (GHGs), NOx, SOx and PM emissions during material production and battery production processes of nickel-metal hydride battery (NiMH), lithium iron phosphate battery (LFP), lithium cobalt dioxide battery (LCO) and lithium nickel manganese cobalt oxide (NMC) battery, assuming that the batteries have same energy capacity. The results showed that environmental performance of LFP battery was better than the other three, and that of NiMH battery was the worst. The experimental results also showed the total energy consumption of LFP battery was 2.8 times of NiMH battery and GHGs emission was 3.2 times during material production, and the total energy consumption was 7.6 times of NIMH battery and GHGs emission was 6.6 times during battery production


2015 ◽  
Vol 1115 ◽  
pp. 531-534
Author(s):  
Siti Fauziah Toha

It is well known that the main constraint of electric vehicles (EVs) is the capabilities to supply efficient energy for driving-range that is comparable to petrol fueled vehicles. Moreover, a large number of batteries needed for EV contribute to heavy weight, poor durability and pricy total cost. In view of that, the need to prolong the battery lifetime, and use its full capacity, is of utmost importance. Therefore, an accurate battery model is a challenging first step to the overall problem soving chain. This paper presents a transfer function model prediction with nature-inspired approach for a Lithium iron phosphate battery. An Ant Colony Optimisation technique is used in search for accurate model with robust capability to adapt with different input current based on the New European Driving Cycle (NEDC) range. The model is further validated with autocorrelation and cross-correlation test and it is proven to give an error tolerance between the 95% confidence limit.


2020 ◽  
Vol 12 (14) ◽  
pp. 5838
Author(s):  
Lars Reimer ◽  
Alexander Kaluza ◽  
Felipe Cerdas ◽  
Jens Meschke ◽  
Thomas Vietor ◽  
...  

The reduction of greenhouse gas (GHG) emissions over the entire life cycle of vehicles has become part of the strategic objectives in automotive industry. In this regard, the design of future body parts should be carried out based on information of life cycle GHG emissions. The substitution of steel towards lightweight materials is a major trend, with the industry undergoing a fundamental shift towards the introduction of electric vehicles (EV). The present research aims to support the conceptual design of body parts with a combined perspective on mechanical performance and life cycle GHG emissions. Particular attention is paid to the fact that the GHG impact of EV in the use phase depends on vehicle-specific factors that may not be specified at the conceptual design stage of components, such as the market-specific electricity mix used for vehicle charging. A methodology is proposed that combines a simplified numerical design of concept alternatives and an analytic approach estimating life cycle GHG emissions. It is applied to a case study in body part design based on a set of principal geometries and load cases, a range of materials (aluminum, glass and carbon fiber reinforced plastics (GFRP, CFRP) as substitution to a steel reference) and different use stage scenarios of EV. A new engineering chart was developed, which helps design engineers to compare life cycle GHG emissions of lightweight material concepts to the reference. For body shells, the replacement of the steel reference with aluminum or GFRP shows reduced lifecycle GHG emissions for most use phase scenarios. This holds as well for structural parts being designed on torsional stiffness. For structural parts designed on tension/compression or bending stiffness CFRP designs show lowest lifecycle GHG emissions. In all cases, a high share of renewable electricity mix and a short lifetime pose the steel reference in favor. It is argued that a further elaboration of the approach could substantially increase transparency between design choices and life cycle GHG emissions.


Environments ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 38 ◽  
Author(s):  
Simona Jursova ◽  
Dorota Burchart-Korol ◽  
Pavlina Pustejovska

In the light of recent developments regarding electric vehicle market share, we assess the carbon footprint and water footprint of electric vehicles and provide a comparative analysis of energy use from the grid to charge electric vehicle batteries in the Czech Republic. The analysis builds on the electricity generation forecast for the Czech Republic for 2015–2050. The impact of different sources of electricity supply on carbon and water footprints were analyzed based on electricity generation by source for the period. Within the Life Cycle Assessment (LCA), the carbon footprint was calculated using the Intergovernmental Panel on Climate Change (IPCC) method, while the water footprint was determined by the Water Scarcity method. The computational LCA model was provided by the SimaPro v. 8.5 package with the Ecoinvent v. 3 database. The functional unit of study was running an electric vehicle over 100 km. The system boundary covered an electric vehicle life cycle from cradle to grave. For the analysis, we chose a vehicle powered by a lithium-ion battery with assumed consumption 19.9 kWh/100 km. The results show that electricity generated to charge electric vehicle batteries is the main determinant of carbon and water footprints related to electric vehicles in the Czech Republic. Another important factor is passenger car production. Nuclear power is the main determinant of the water footprint for the current and future electric vehicle charging, while, currently, lignite and hard coal are the main determinants of carbon footprint.


Energy ◽  
2020 ◽  
Vol 191 ◽  
pp. 116588 ◽  
Author(s):  
Guoxuan Li ◽  
Peizhe Cui ◽  
Yinglong Wang ◽  
Zhiqiang Liu ◽  
Zhaoyou Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document