The Aksug Porphyry Cu–Mo Ore-Magmatic System (Northeastern Tuva): Sources and Formation of Ore-Bearing Magma

2021 ◽  
Vol 62 (4) ◽  
pp. 445-459
Author(s):  
A.N. Berzina ◽  
A.P. Berzina ◽  
V.O. Gimon

Abstract ––Two stages are recognized in the evolution of the Aksug ore-magmatic system (OMS): (1) formation of the Aksug granitoid pluton and (2) emplacement of small ore-bearing intrusions. Intrusive bodies of the two stages are composed of rocks of the same type and bear copper mineralization: poor dispersed and large-scale veinlet-disseminated, respectively. The pluton and small intrusions are formed by gabbroid and granitoid rocks, with similar petrogeochemical characteristics of igneous rocks of the same type. The plutonic gabbroic association includes gabbro, gabbrodiorites, and pyroxene–amphibole diorites/quartz diorites. The small subvolcanic gabbroic intrusions are gabbrodiorite and diorite porphyrites. The trace element patterns of the gabbroids are similar to those of igneous rocks in subduction zones. The gabbroids are characterized by isotope parameters εNd(500) = +6.1 to +7.2 and (87Sr/86Sr)500 = 0.7022–0.7030 and model age TNd(DM) = 0.85–0.74 Ga. As follows from the geochemical parameters, the depleted mantle metasomatized by subduction fluids was the source of basaltic magma. The plutonic granitoid association includes tonalites, plagiogranites, and amphibole diorites/quartz diorites; the small subvolcanic granitoid intrusions are tonalite porphyry and quartz diorite porphyrites. The trace element patterns and Nd and Sr isotope compositions of the granitoids are much similar to those of the gabbroids. According to the geochemical parameters, tonalitic and plagiogranitic magmas formed through the melting of juvenile mafic crust, and dioritic magma resulted from the mixing of basaltic and tonalitic/plagiogranitic magmas. In the course of the OMS formation, metals and volatiles were introduced by basaltic and granitoid magmas from the metasomatized mantle and juvenile mafic crust. The compression setting during the pluton formation hampered the separation of ore-bearing fluids, which led to poor dispersed mineralization. The extension setting during the emplacement of small intrusions favored the intense separation of ore-bearing fluids. The interaction of magma and fluids of the small intrusions with rocks of the pluton was accompanied by the removal of metals from the latter and their involvement in the ore-forming process. This increased the ore potential of the magmatic system and favored the formation of rich mineralization at the final stage of its evolution.

Geology ◽  
2019 ◽  
Vol 48 (3) ◽  
pp. 216-220 ◽  
Author(s):  
David Hernández-Uribe ◽  
Juan David Hernández-Montenegro ◽  
Kim A. Cone ◽  
Richard M. Palin

Abstract Arc volcanism and trace-element recycling are controlled by the devolatilization of oceanic crust during subduction. The type of fluid—either aqueous fluids or hydrous melts—released during subduction is controlled by the thermal structure of the subduction zone. Recent thermomechanical models and results from experimental petrology argue that slab melting occurs in almost all subduction zones, although this is not completely supported by the rock record. Here we show via phase equilibrium modeling that melting of either fresh or hydrothermally altered basalt rarely occurs during subduction, even at water-saturated conditions. Melting occurs only along the hottest slab-top geotherms, with aqueous fluids being released in the forearc region and anatexis restricted to subarc depths, leading to high-SiO2 adakitic magmatism. We posit that aqueous fluids and hydrous melts preferentially enhance chemical recycling in “hot” subduction zones. Our models show that subducted hydrothermally altered basalt is more fertile than pristine basaltic crust, enhancing fluid and melt production during subduction and leading to a greater degree of chemical recycling. In this contribution, we put forward a petrological model to explain (the lack of) melting during the subduction of oceanic crust and suggest that many large-scale models of mass transfer between Earth’s surface and interior may require revision.


2021 ◽  
Author(s):  
◽  
Lai Kwan Denise Tang

<p>Hong Kong represents a microcosm of the magmatic and tectonic processes that are related to formation of the Southeast China Magmatic Belt (SCMB, ~1,300 km long by 400 km wide). The SCMB is dominated by extensive Mesozoic (Yanshanian Orogeny) igneous rocks, which form part of an extensive, long-lived circum-Pacific igneous province. In Hong Kong, large silicic ignimbrites, produced from several calderas identified through geological mapping, together with their sub-volcanic plutons record a ~26-Myr period of magmatic activities from ~164 to 138 Ma. This work studies these volcanic-plutonic assemblages with the associated Lantau and High Island caldera complexes, with an emphasis on the ~143-138 Ma period from the latter complex. This study uses multiple techniques, including field studies, zircon geochronology and trace element analyses, and zircon and apatite low-temperature thermochronology, to gain new insights into the Mesozoic tectono-magmatic history in this region.  Field studies demonstrate that the High Island caldera complex (with its main collapse at 140.9±0.4 Ma in association with the High Island Tuff) is structurally more complex than previously suggested and represents a long-lived, large (320 km²) feature. The volcanic strata exposed in the eastern part of the caldera are inferred to have been tilted during syneruptive, asymmetric collapse of the caldera floor, whereas those in other parts have been affected by block faulting but not overall tilting. Two ignimbrites (e.g. Long Harbour: 141.4±1.0 Ma) exposed within the caldera outline are now interpreted to have accumulated in local volcano-tectonic basins, confined by faults that were later exploited by dyke intrusions. Field observations offer important constraints on the ages of volcanic and plutonic units, which have been tested by zircon U-Pb dating in this study. The field evidence also negates a previous interpretation that there was an overall tilting of the High Island caldera complex.  U-Pb dating and trace element analyses using secondary-ion mass spectrometry (SIMS) techniques have been carried out on zircons separated from 21 samples, chosen from both volcanic and plutonic samples within the Lantau and High Island Caldera complexes. The SIMS age datasets reveal two groups: (1) seven samples with unimodal age spectra; and (2) fourteen samples yielding multiple age components. Five samples in group 1 yield mean ages indistinguishable from their previously published ID-TIMS ages, demonstrating that the SIMS techniques have generated results fully in agreement with the ID-TIMS methods, although with overall less precision. Of the two other samples, one is slightly younger than the published ID-TIMS age, and the other has no previous age determination. Thirteen samples in group 2 are interpreted to have crystallisation/eruption ages that are younger (although often within 2.s.d. uncertainties) than their corresponding ID-TIMS values. The remaining sample from this group has no previous age determination. The overall age patterns from both groups suggest that, instead of separate phases of activity at ~143 and 141-140 Ma as previously inferred, magmatic and volcanic activities were continuous (within age analytical uncertainties) over a ~5 Myr period. Direct linkages between several plutonic and volcanic units in this period of activity (e.g. High Island Tuff and the Kowloon Granite) are no longer supported by the age data, and magmatic activity represented by exposed plutons continued until 137.8±0.8 Ma, as with the Mount Butler Granite.  Under CL imagery, a wide variety of zircon textures is evident, indicative of complex processes that operated in the magmatic systems. Zircon trace element data coupled with textural characteristics enable identification of some common petrogenetic processes. Overall, the intra-grain (cores-rims, sector-zoned zircons) and intra-sample variations in trace element abundance and elemental ratios are more significant than the differences between individual samples. Zircon chemistries in samples from both the volcanic and plutonic records indicate that there are two groups of volcanic-plutonic products through the history of the High Island Caldera magmatic system. Two evolutionary models are proposed here to explain these two groups. In the first model, the magmatic system comprises a single domain that fluctuated in temperature through varying inputs of hotter melts (and was randomly tapped). In the second model the intrusive and extrusive products represent interplay of two magmatic domains in the crust, with contrasting characteristics.  Zircon and apatite fission track analyses have been carried out on several of the rocks dated by U-Pb methods (either SIMS or TIMS), together with a selection of other Mesozoic igneous rocks and post-magmatic Cretaceous and Eocene sediments to cover the geographic area of Hong Kong. The fission-track dataset and associated thermal modelling show that the igneous rocks and Cretaceous sediments (but not the Eocene sediments) together experienced post-emplacement or post-depositional heating to >250 ºC, subsequently cooling through 120-60 ºC after ~80 Ma. The heating reflects the combined effects of an enhanced geothermal gradient and burial. The enhanced geothermal gradient is interpreted to represent continuing Yanshanian magmatic activity at depth, without any documented surface eruption products, until ~100-80 Ma. The data also indicate a long-term, slow cooling (~1 ºC/Myr) since the early Cenozoic, linked to ~2-3 km of erosion-driven exhumation. The thermo-tectonic history of Hong Kong reflects the mid-Cretaceous transition of southeast China from an active to a passive margin bordered by marginal basins that formed in the early Cenozoic. The inferred cessation of magmatism at depth below Hong Kong at ~100-80 Ma is broadly coincident with the cessation of plutonic activity in many other circum-Pacific magmatic provinces related to reorganisation of Pacific Plate motion.</p>


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1128
Author(s):  
Agababa A. Mustafaev ◽  
Igor F. Gertner ◽  
Richard E. Ernst ◽  
Pavel A. Serov ◽  
Yurii V. Kolmakov

Geological, geochemical and ground magnetic techniques are used to characterize the University alkaline-gabbroid pluton and crosscutting N-S trending alkaline dikes, located northeast of the Kuznetsk Alatau ridge, Siberia. Trace element concentrations and isotopic compositions of the igneous units were determined by XRF, ICP-MS and isotope analysis. The Sm-Nd age of subalkaline (melanogabbro, leucogabbro 494–491 Ma) intrusive phases and crosscutting alkaline dikes (plagioclase ijolite, analcime syenite 392–389 Ma) suggests two stages of activity, likely representing separate events. The subalkaline and alkaline rocks are characterized by low silicic acidity (SiO2 = 41–49 wt %), wide variations in alkalinity (Na2O + K2O = 3–19 wt %; Na2O/K2O = 1.2–7.2 wt %), high alumina content (Al2O3 = 15–28 wt %) and low titanium content (TiO2 = 0.07–1.59 wt %). The new trace element data for subalkaline rocks (∑REE 69–280 ppm; La/Yb 3.7–10.2) of the University pluton and also the crosscutting younger (390 Ma) alkaline dikes (∑REE 10–1567 ppm; La/Yb 0.7–17.8 ppm) both reflect an intermediate position between oceanic island basalts (OIBs) and island arc basalts (IABs). The presence of a negative Nb–Ta anomaly and the relative enrichment in Rb, Ba, Sr, and U indicate a probable interaction of mantle plume material with the lithospheric mantle beneath previously formed accretion complexes of subduction zones. The isotopic signatures of strontium (εSr(T) +3.13–+28.31) and neodymium (εNd(T) +3.2–+8.7) demonstrate the evolution of parental magmas from a plume source from moderately depleted PREMA mantle, whose derivatives underwent selective crustal contamination.


2021 ◽  
Author(s):  
◽  
George Frederick Cooper

<p>This thesis research focuses on clast and crystal-specific studies to investigate the pre- and syn-eruptive magmatic processes of two supereruptions in the TVZ: the 1.21 Ma Ongatiti (>500 km3) and the 1.0 Ma Kidnappers (~1200 km3), together with the smaller (~200 km3) 1.0 Ma Rocky Hill eruption from the Mangakino Volcanic Centre (MVC).  Crystallisation histories determined through SIMS U-Pb dating of zircons reveal that the paired Kidnappers and Rocky Hill eruptions were products of a common magmatic system, which built over ~200 kyr, in the time break after the Ongatiti eruption. U-Pb age spectra from the Ongatiti show a protracted crystallisation history (over ~250 kyr), in which the majority of zircon crystallised ~100 kyr prior to eruption in a crystal mush. Zircons then ascended with melt during accumulation of the final erupted magma body in the shallow crust. Zircons remained stable in the melt dominant body but underwent little further crystallisation. Zircons from all three systems record common geochemical processes governed by the fractionating assemblage (predominantly plagioclase and amphibole). In particular, the MREE/HREE ratios and Sr concentrations of zircons from the Ongatiti record imply two contrasting source regions governed by different proportions of crystallising amphibole.  The in-situ major and trace element chemistry of glass shards and crystals from the Kidnappers fall deposit reveal that magma within the Kidnappers was stored in three discrete bodies, which were systematically tapped during the early stages of eruption. Temperature and pressure (T-P) estimates from amphibole and Fe-Ti oxide equilibria from each magma type are similar and therefore the three magma bodies were adjacent, not vertically stacked, in the crust. Amphibole model T-P estimates range from 770 to 840 °C and 90 to 170 MPa corresponding to pre-eruptive storage depths of ~4.0-6.5 km. The systematic evacuation of the three independent magma bodies implies that there was tectonic triggering and linkage of eruptions. The termination of fall deposition and onset of the overlying ignimbrite emplacement marks the point of widespread caldera collapse and the catastrophic evacuation of a wider variety of melt during the Kidnappers eruption.  Pumice compositions from the Kidnappers ignimbrite fall into three groups, two of which (KI-1 and KI-2) can be matched to bodies tapped during the fall phase of the eruption, with the addition of a further discrete batch of lower SiO2 (KI-3) magma. Core-rim textural and chemical variations in major crystal phases (plagioclase, amphibole and orthopyroxene) suggest each compositional group was sourced from a common mush but underwent a unique magmatic history during the development of melt-dominant bodies in the final stages prior to eruption. The field relationships and distinctive appearance of the Rocky Hill ignimbrite (~200 km3 DRE) and the underlying Kidnappers ignimbrite suggests that the two deposits are from distinct eruption events. However, major and trace element chemistry of matrix glass, coupled with the textural and chemical signatures of crystals suggests the magma erupted during the Rocky Hill was generated from the same source or mush zone as the Kidnappers. The two largest melt-dominant bodies (KI-1 and KI-2) within the Kidnappers were renewed, underwent mixing and incorporation of marginal material to form two magma types (RH-1 and RH-2) in the time break prior to the Rocky Hill eruption.  Fe-Mg interdiffusion timescales in orthopyroxenes from the Kidnappers and Rocky Hill deposits suggest the establishment of the final melt-dominant bodies, through extraction of melt and crystals from a common mush, occurred within 1000 years, and peaked within centuries of each eruption. In addition, one discrete batch of Kidnappers melt has evidence for interaction with a lesser evolved melt within 50 yrs prior to eruption. This rejuvenation event was not the eruption trigger but may have primed the magma for eruption. The difference in timescales from common zones from both the Kidnappers and Rocky Hill orthopyroxene, recording the same processes reveal the time break between the two eruptions was ~20-40 years. This work highlights the rapidity of rejuvenation and renewal of the melt-dominant bodies within the Kidnappers/Rocky Hill magmatic system.  The textural and in-situ compositional signatures of crystals from the Ongatiti ignimbrite imply the final erupted magma body was assembled from a thermally and chemically zoned mush, which extended to the base of the quartzofeldspathic crust (~15km). The mush was close to water saturation and was dominated by amphibole crystallisation. Melt and crystals (including the majority of zircons) were extracted from the mush and ascended to 4-6 km depths during the development of a crystal-rich (20-30%), but melt-dominant body. Significant crystallisation of plagioclase (and lesser proportions of orthopyroxene and amphibole) occurred in an event involving the gradual heating and/or increase of water in the rhyolite, from a broadly andesitic underplated magma. Homogeneous crystal rim and matrix glass compositions imply the final erupted volume of magma was effectively mixed through convection. Eu/Eu* values of whole-rock and matrix glass suggest little crystal-melt separation occurred in the melt-dominant magma body prior to eruption.  This work has implications for understanding the generation, storage and eruption of large-scale silicic magma systems. The Ongatiti ignimbrite does not represent either an erupted mush, or a stratified magma chamber, suggesting an alternative model for the development of eruptible magma within large-scale silicic systems. The Kidnappers/Rocky Hill sequence records a complex interplay of multiple melt-dominant bodies, which were established and renewed on rapid timescales. The rapid timescales for the development of melt-dominant bodies and the systematic tapping of magmas in the Kidnappers/Rocky Hill system imply that tectonics may have had a strong external control on the eruptions at Mangakino.</p>


2019 ◽  
Vol 132 (5-6) ◽  
pp. 1083-1105 ◽  
Author(s):  
Hadi Shafaii Moghadam ◽  
R.J. Stern ◽  
W.L. Griffin ◽  
M.Z. Khedr ◽  
M. Kirchenbaur ◽  
...  

Abstract How new subduction zones form is an ongoing scientific question with key implications for our understanding of how this process influences the behavior of the overriding plate. Here we focus on the effects of a Late Cretaceous subduction-initiation (SI) event in Iran and show how SI caused enough extension to open a back-arc basin in NE Iran. The Late Cretaceous Torbat-e-Heydarieh ophiolite (THO) is well exposed as part of the Sabzevar-Torbat-e-Heydarieh ophiolite belt. It is dominated by mantle peridotite, with a thin crustal sequence. The THO mantle sequence consists of harzburgite, clinopyroxene-harzburgite, plagioclase lherzolite, impregnated lherzolite, and dunite. Spinel in THO mantle peridotites show variable Cr# (10–63), similar to both abyssal and fore-arc peridotites. The igneous rocks (gabbros and dikes intruding mantle peridotite, pillowed and massive lavas, amphibole gabbros, plagiogranites and associated diorites, and diabase dikes) display rare earth element patterns similar to MORB, arc tholeiite and back-arc basin basalt. Zircons from six samples, including plagiogranites and dikes within mantle peridotite, yield U-Pb ages of ca. 99–92 Ma, indicating that the THO formed during the Late Cretaceous and was magmatically active for ∼7 m.y. THO igneous rocks have variable εNd(t) of +5.7 to +8.2 and εHf(t) ranging from +14.9 to +21.5; zircons have εHf(t) of +8.1 to +18.5. These isotopic compositions indicate that the THO rocks were derived from an isotopically depleted mantle source similar to that of the Indian Ocean, which was slightly affected by the recycling of subducted sediments. We conclude that the THO and other Sabzevar-Torbat-e-Heydarieh ophiolites formed in a back-arc basin well to the north of the Late Cretaceous fore-arc, now represented by the Zagros ophiolites, testifying that a broad region of Iran was affected by upper-plate extension accompanying Late Cretaceous subduction initiation.


2021 ◽  
Author(s):  
◽  
Lai Kwan Denise Tang

<p>Hong Kong represents a microcosm of the magmatic and tectonic processes that are related to formation of the Southeast China Magmatic Belt (SCMB, ~1,300 km long by 400 km wide). The SCMB is dominated by extensive Mesozoic (Yanshanian Orogeny) igneous rocks, which form part of an extensive, long-lived circum-Pacific igneous province. In Hong Kong, large silicic ignimbrites, produced from several calderas identified through geological mapping, together with their sub-volcanic plutons record a ~26-Myr period of magmatic activities from ~164 to 138 Ma. This work studies these volcanic-plutonic assemblages with the associated Lantau and High Island caldera complexes, with an emphasis on the ~143-138 Ma period from the latter complex. This study uses multiple techniques, including field studies, zircon geochronology and trace element analyses, and zircon and apatite low-temperature thermochronology, to gain new insights into the Mesozoic tectono-magmatic history in this region.  Field studies demonstrate that the High Island caldera complex (with its main collapse at 140.9±0.4 Ma in association with the High Island Tuff) is structurally more complex than previously suggested and represents a long-lived, large (320 km²) feature. The volcanic strata exposed in the eastern part of the caldera are inferred to have been tilted during syneruptive, asymmetric collapse of the caldera floor, whereas those in other parts have been affected by block faulting but not overall tilting. Two ignimbrites (e.g. Long Harbour: 141.4±1.0 Ma) exposed within the caldera outline are now interpreted to have accumulated in local volcano-tectonic basins, confined by faults that were later exploited by dyke intrusions. Field observations offer important constraints on the ages of volcanic and plutonic units, which have been tested by zircon U-Pb dating in this study. The field evidence also negates a previous interpretation that there was an overall tilting of the High Island caldera complex.  U-Pb dating and trace element analyses using secondary-ion mass spectrometry (SIMS) techniques have been carried out on zircons separated from 21 samples, chosen from both volcanic and plutonic samples within the Lantau and High Island Caldera complexes. The SIMS age datasets reveal two groups: (1) seven samples with unimodal age spectra; and (2) fourteen samples yielding multiple age components. Five samples in group 1 yield mean ages indistinguishable from their previously published ID-TIMS ages, demonstrating that the SIMS techniques have generated results fully in agreement with the ID-TIMS methods, although with overall less precision. Of the two other samples, one is slightly younger than the published ID-TIMS age, and the other has no previous age determination. Thirteen samples in group 2 are interpreted to have crystallisation/eruption ages that are younger (although often within 2.s.d. uncertainties) than their corresponding ID-TIMS values. The remaining sample from this group has no previous age determination. The overall age patterns from both groups suggest that, instead of separate phases of activity at ~143 and 141-140 Ma as previously inferred, magmatic and volcanic activities were continuous (within age analytical uncertainties) over a ~5 Myr period. Direct linkages between several plutonic and volcanic units in this period of activity (e.g. High Island Tuff and the Kowloon Granite) are no longer supported by the age data, and magmatic activity represented by exposed plutons continued until 137.8±0.8 Ma, as with the Mount Butler Granite.  Under CL imagery, a wide variety of zircon textures is evident, indicative of complex processes that operated in the magmatic systems. Zircon trace element data coupled with textural characteristics enable identification of some common petrogenetic processes. Overall, the intra-grain (cores-rims, sector-zoned zircons) and intra-sample variations in trace element abundance and elemental ratios are more significant than the differences between individual samples. Zircon chemistries in samples from both the volcanic and plutonic records indicate that there are two groups of volcanic-plutonic products through the history of the High Island Caldera magmatic system. Two evolutionary models are proposed here to explain these two groups. In the first model, the magmatic system comprises a single domain that fluctuated in temperature through varying inputs of hotter melts (and was randomly tapped). In the second model the intrusive and extrusive products represent interplay of two magmatic domains in the crust, with contrasting characteristics.  Zircon and apatite fission track analyses have been carried out on several of the rocks dated by U-Pb methods (either SIMS or TIMS), together with a selection of other Mesozoic igneous rocks and post-magmatic Cretaceous and Eocene sediments to cover the geographic area of Hong Kong. The fission-track dataset and associated thermal modelling show that the igneous rocks and Cretaceous sediments (but not the Eocene sediments) together experienced post-emplacement or post-depositional heating to >250 ºC, subsequently cooling through 120-60 ºC after ~80 Ma. The heating reflects the combined effects of an enhanced geothermal gradient and burial. The enhanced geothermal gradient is interpreted to represent continuing Yanshanian magmatic activity at depth, without any documented surface eruption products, until ~100-80 Ma. The data also indicate a long-term, slow cooling (~1 ºC/Myr) since the early Cenozoic, linked to ~2-3 km of erosion-driven exhumation. The thermo-tectonic history of Hong Kong reflects the mid-Cretaceous transition of southeast China from an active to a passive margin bordered by marginal basins that formed in the early Cenozoic. The inferred cessation of magmatism at depth below Hong Kong at ~100-80 Ma is broadly coincident with the cessation of plutonic activity in many other circum-Pacific magmatic provinces related to reorganisation of Pacific Plate motion.</p>


2021 ◽  
Author(s):  
◽  
George Frederick Cooper

<p>This thesis research focuses on clast and crystal-specific studies to investigate the pre- and syn-eruptive magmatic processes of two supereruptions in the TVZ: the 1.21 Ma Ongatiti (>500 km3) and the 1.0 Ma Kidnappers (~1200 km3), together with the smaller (~200 km3) 1.0 Ma Rocky Hill eruption from the Mangakino Volcanic Centre (MVC).  Crystallisation histories determined through SIMS U-Pb dating of zircons reveal that the paired Kidnappers and Rocky Hill eruptions were products of a common magmatic system, which built over ~200 kyr, in the time break after the Ongatiti eruption. U-Pb age spectra from the Ongatiti show a protracted crystallisation history (over ~250 kyr), in which the majority of zircon crystallised ~100 kyr prior to eruption in a crystal mush. Zircons then ascended with melt during accumulation of the final erupted magma body in the shallow crust. Zircons remained stable in the melt dominant body but underwent little further crystallisation. Zircons from all three systems record common geochemical processes governed by the fractionating assemblage (predominantly plagioclase and amphibole). In particular, the MREE/HREE ratios and Sr concentrations of zircons from the Ongatiti record imply two contrasting source regions governed by different proportions of crystallising amphibole.  The in-situ major and trace element chemistry of glass shards and crystals from the Kidnappers fall deposit reveal that magma within the Kidnappers was stored in three discrete bodies, which were systematically tapped during the early stages of eruption. Temperature and pressure (T-P) estimates from amphibole and Fe-Ti oxide equilibria from each magma type are similar and therefore the three magma bodies were adjacent, not vertically stacked, in the crust. Amphibole model T-P estimates range from 770 to 840 °C and 90 to 170 MPa corresponding to pre-eruptive storage depths of ~4.0-6.5 km. The systematic evacuation of the three independent magma bodies implies that there was tectonic triggering and linkage of eruptions. The termination of fall deposition and onset of the overlying ignimbrite emplacement marks the point of widespread caldera collapse and the catastrophic evacuation of a wider variety of melt during the Kidnappers eruption.  Pumice compositions from the Kidnappers ignimbrite fall into three groups, two of which (KI-1 and KI-2) can be matched to bodies tapped during the fall phase of the eruption, with the addition of a further discrete batch of lower SiO2 (KI-3) magma. Core-rim textural and chemical variations in major crystal phases (plagioclase, amphibole and orthopyroxene) suggest each compositional group was sourced from a common mush but underwent a unique magmatic history during the development of melt-dominant bodies in the final stages prior to eruption. The field relationships and distinctive appearance of the Rocky Hill ignimbrite (~200 km3 DRE) and the underlying Kidnappers ignimbrite suggests that the two deposits are from distinct eruption events. However, major and trace element chemistry of matrix glass, coupled with the textural and chemical signatures of crystals suggests the magma erupted during the Rocky Hill was generated from the same source or mush zone as the Kidnappers. The two largest melt-dominant bodies (KI-1 and KI-2) within the Kidnappers were renewed, underwent mixing and incorporation of marginal material to form two magma types (RH-1 and RH-2) in the time break prior to the Rocky Hill eruption.  Fe-Mg interdiffusion timescales in orthopyroxenes from the Kidnappers and Rocky Hill deposits suggest the establishment of the final melt-dominant bodies, through extraction of melt and crystals from a common mush, occurred within 1000 years, and peaked within centuries of each eruption. In addition, one discrete batch of Kidnappers melt has evidence for interaction with a lesser evolved melt within 50 yrs prior to eruption. This rejuvenation event was not the eruption trigger but may have primed the magma for eruption. The difference in timescales from common zones from both the Kidnappers and Rocky Hill orthopyroxene, recording the same processes reveal the time break between the two eruptions was ~20-40 years. This work highlights the rapidity of rejuvenation and renewal of the melt-dominant bodies within the Kidnappers/Rocky Hill magmatic system.  The textural and in-situ compositional signatures of crystals from the Ongatiti ignimbrite imply the final erupted magma body was assembled from a thermally and chemically zoned mush, which extended to the base of the quartzofeldspathic crust (~15km). The mush was close to water saturation and was dominated by amphibole crystallisation. Melt and crystals (including the majority of zircons) were extracted from the mush and ascended to 4-6 km depths during the development of a crystal-rich (20-30%), but melt-dominant body. Significant crystallisation of plagioclase (and lesser proportions of orthopyroxene and amphibole) occurred in an event involving the gradual heating and/or increase of water in the rhyolite, from a broadly andesitic underplated magma. Homogeneous crystal rim and matrix glass compositions imply the final erupted volume of magma was effectively mixed through convection. Eu/Eu* values of whole-rock and matrix glass suggest little crystal-melt separation occurred in the melt-dominant magma body prior to eruption.  This work has implications for understanding the generation, storage and eruption of large-scale silicic magma systems. The Ongatiti ignimbrite does not represent either an erupted mush, or a stratified magma chamber, suggesting an alternative model for the development of eruptible magma within large-scale silicic systems. The Kidnappers/Rocky Hill sequence records a complex interplay of multiple melt-dominant bodies, which were established and renewed on rapid timescales. The rapid timescales for the development of melt-dominant bodies and the systematic tapping of magmas in the Kidnappers/Rocky Hill system imply that tectonics may have had a strong external control on the eruptions at Mangakino.</p>


2020 ◽  
Vol 39 (4) ◽  
pp. 5449-5458
Author(s):  
A. Arokiaraj Jovith ◽  
S.V. Kasmir Raja ◽  
A. Razia Sulthana

Interference in Wireless Sensor Network (WSN) predominantly affects the performance of the WSN. Energy consumption in WSN is one of the greatest concerns in the current generation. This work presents an approach for interference measurement and interference mitigation in point to point network. The nodes are distributed in the network and interference is measured by grouping the nodes in the region of a specific diameter. Hence this approach is scalable and isextended to large scale WSN. Interference is measured in two stages. In the first stage, interference is overcome by allocating time slots to the node stations in Time Division Multiple Access (TDMA) fashion. The node area is split into larger regions and smaller regions. The time slots are allocated to smaller regions in TDMA fashion. A TDMA based time slot allocation algorithm is proposed in this paper to enable reuse of timeslots with minimal interference between smaller regions. In the second stage, the network density and control parameter is introduced to reduce interference in a minor level within smaller node regions. The algorithm issimulated and the system is tested with varying control parameter. The node-level interference and the energy dissipation at nodes are captured by varying the node density of the network. The results indicate that the proposed approach measures the interference and mitigates with minimal energy consumption at nodes and with less overhead transmission.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042098705
Author(s):  
Xinran Wang ◽  
Yangli Zhu ◽  
Wen Li ◽  
Dongxu Hu ◽  
Xuehui Zhang ◽  
...  

This paper focuses on the effects of the off-design operation of CAES on the dynamic characteristics of the triple-gear-rotor system. A finite element model of the system is set up with unbalanced excitations, torque load excitations, and backlash which lead to variations of tooth contact status. An experiment is carried out to verify the accuracy of the mathematical model. The results show that when the system is subjected to large-scale torque load lifting at a high rotating speed, it has two stages of relatively strong periodicity when the torque load is light, and of chaotic when the torque load is heavy, with the transition between the two states being relatively quick and violent. The analysis of the three-dimensional acceleration spectrum and the meshing force shows that the variation in the meshing state and the fluctuation of the meshing force is the basic reasons for the variation in the system response with the torque load. In addition, the three rotors in the triple-gear-rotor system studied show a strong similarity in the meshing states and meshing force fluctuations, which result in the similarity in the dynamic responses of the three rotors.


Author(s):  
Anne-Aziliz Pelleter ◽  
Gaëlle Prouteau ◽  
Bruno Scaillet

Abstract We performed phase equilibrium experiments on a natural Ca-poor pelite at 3 GPa, 750-1000 °C, under moderately oxidizing conditions, simulating the partial melting of such lithologies in subduction zones. Experiments investigated the effect of sulphur addition on phase equilibria and compositions, with S contents of up to ∼ 2.2 wt. %. Run products were characterized for their major and trace element contents, in order to shed light on the role of sulphur on the trace element patterns of melts produced by partial melting of oceanic Ca-poor sediments. Results show that sulphur addition leads to the replacement of phengite by biotite along with the progressive consumption of garnet, which is replaced by an orthopyroxene-kyanite assemblage at the highest sulphur content investigated. All Fe-Mg silicate phases produced with sulphur, including melt, have higher MgO/(MgO+FeO) ratios (relative to S-free/poor conditions), owing to Fe being primarily locked up by sulphide in the investigated redox range. Secular infiltration of the mantle wedge by such MgO and K2O-rich melts may have contributed to the Mg and K-rich character of the modern continental crust. Addition of sulphur does not affect significantly the stability of the main accessory phases controlling the behaviour of trace elements (monazite, rutile and zircon), although our results suggest that monazite solubility is sensitive to S content at the conditions investigated. The low temperature (∼ 800 °C) S-bearing and Ca-poor sediment sourced slab melts show Th and La abundances, Th/La systematics and HFSE signatures in agreement with the characteristics of sediment-rich arc magmas. Because high S contents diminish phengite and garnet stabilities, S-rich and Ca-poor sediment sourced slab melts have higher contents of Rb, B, Li (to a lesser extent), and HREE. The highest ratios of La/Yb are observed in sulphur-poor runs (with a high proportion of garnet, which retains HREE) and beyond the monazite out curve (which retains LREE). Sulphides appear to be relatively Pb-poor and impart high Pb/Ce ratio to coexisting melts, even at high S content. Overall, our results show that Phanerozoic arc magmas from high sediment flux margins owe their geochemical signature to the subduction of terrigenous, sometimes S-rich, sediments. In contrast, subduction of such lithologies during Archean appears unlikely or unrecorded.


Sign in / Sign up

Export Citation Format

Share Document