scholarly journals Synthesis of Antimycobacterial Agents that Harness Mycothiol and Cysteine conjugate β-lyase Metabolic Pathways

2021 ◽  
Author(s):  
◽  
Scott W. Riordan

<p>Mycobacterium tuberculosis kills approximately two million people each year and is second only to HIV/AIDs in terms of death from infectious disease. The most pertinent problem in regards to Mycobacterium tuberculosis today is the increasing prevalence of drug resistant strains. Thus, there is a great need for the development of new drugs with novel targets. This thesis aimed to address this problem by synthesizing a compound that could exploit the mycothiol detoxification pathway, unique to Mycobacterium, in order to cause cell death, through the release of a harmful halothioketene.  The research described herein involved the successful synthesis of the desired mycothiol analogue, along with three other related compounds. The target compounds were synthesised via protection of N-acetyl glucosamine, followed by thioglycosidation with cyclohexane thiol. Subsequent deprotection and coupling to Boc protected Strichlorovinyl cysteine provided access to the synthetic target and its β-anomer, as well as their Boc protected precursors.  The original synthetic target demonstrated weak antimycobacterial activity against Mycobacterium smegmatis and an encouraging sub 100 μM MIC against Mycobacterium bovis derived Bacillus Calmette–Guérin. Unexpectedly the beta anomer of the synthetic target also displayed antimycobacterial activity against Bacillus Calmette–Guérin (MIC 125 - 250 μM). All compounds proved to be active against HL60 cells (16-114 μM).  Whilst further work is required to improve efficacy, the work presented here demonstrates the potential of these compounds as leads for the generation of new antimycobacterial agents.</p>

2021 ◽  
Author(s):  
◽  
Scott W. Riordan

<p>Mycobacterium tuberculosis kills approximately two million people each year and is second only to HIV/AIDs in terms of death from infectious disease. The most pertinent problem in regards to Mycobacterium tuberculosis today is the increasing prevalence of drug resistant strains. Thus, there is a great need for the development of new drugs with novel targets. This thesis aimed to address this problem by synthesizing a compound that could exploit the mycothiol detoxification pathway, unique to Mycobacterium, in order to cause cell death, through the release of a harmful halothioketene.  The research described herein involved the successful synthesis of the desired mycothiol analogue, along with three other related compounds. The target compounds were synthesised via protection of N-acetyl glucosamine, followed by thioglycosidation with cyclohexane thiol. Subsequent deprotection and coupling to Boc protected Strichlorovinyl cysteine provided access to the synthetic target and its β-anomer, as well as their Boc protected precursors.  The original synthetic target demonstrated weak antimycobacterial activity against Mycobacterium smegmatis and an encouraging sub 100 μM MIC against Mycobacterium bovis derived Bacillus Calmette–Guérin. Unexpectedly the beta anomer of the synthetic target also displayed antimycobacterial activity against Bacillus Calmette–Guérin (MIC 125 - 250 μM). All compounds proved to be active against HL60 cells (16-114 μM).  Whilst further work is required to improve efficacy, the work presented here demonstrates the potential of these compounds as leads for the generation of new antimycobacterial agents.</p>


Author(s):  
Nandan Sarkar ◽  
Yadu Nandan Dey ◽  
Dharmendra Kumar ◽  
Mogana R

: Effective treatment of tuberculosis has been hindered by the emergence of drug-resistant strains of Mycobacterium therapeutic facilities tuberculosis. With the global resurgence of tuberculosis with the development of multidrug-resistant cases, there is a call for the development of new drugs to combat these diseases. Throughout history, natural products have afforded a rich source of compounds that have found many applications in the fields of medicine, pharmacy and biology, and continued to play a significant role in the drug discovery and development process. This review article depicts the various potential plant extracts as well as plant-derived phytoconstituents against the H37rv, the most persistent strains of Mycobacterium tuberculosis and its multidrug strains.


2020 ◽  
Vol 477 (21) ◽  
pp. 4167-4190
Author(s):  
Balasubramani GL ◽  
Rinky Rajput ◽  
Manish Gupta ◽  
Pradeep Dahiya ◽  
Jitendra K. Thakur ◽  
...  

Drug repurposing is an alternative avenue for identifying new drugs to treat tuberculosis (TB). Despite the broad-range of anti-tubercular drugs, the emergence of multi-drug-resistant and extensively drug-resistant strains of Mycobacterium tuberculosis (Mtb) H37Rv, as well as the significant death toll globally, necessitates the development of new and effective drugs to treat TB. In this study, we have employed a drug repurposing approach to address this drug resistance problem by screening the drugbank database to identify novel inhibitors of the Mtb target enzyme, DNA gyrase. The compounds were screened against the ATPase domain of the gyrase B subunit (MtbGyrB47), and the docking results showed that echinacoside, doxorubicin, epirubicin, and idarubicin possess high binding affinities against MtbGyrB47. Comprehensive assessment using fluorescence spectroscopy, surface plasmon resonance spectroscopy (SPR), and circular dichroism (CD) titration studies revealed echinacoside as a potent binder of MtbGyrB47. Furthermore, ATPase, and DNA supercoiling assays exhibited an IC50 values of 2.1–4.7 µM for echinacoside, doxorubicin, epirubicin, and idarubicin. Among these compounds, the least MIC90 of 6.3 and 12 μM were observed for epirubicin and echinacoside, respectively, against Mtb. Our findings indicate that echinacoside and epirubicin targets mycobacterial DNA gyrase, inhibit its catalytic cycle, and retard mycobacterium growth. Further, these compounds exhibit potential scaffolds for optimizing novel anti-mycobacterial agents that can act on drug-resistant strains.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Jiawei Wei ◽  
Nan Lu ◽  
Zhiying Li ◽  
Xuanyan Wu ◽  
Tao Jiang ◽  
...  

Tuberculosis remains one of the leading causes of death worldwide. Even if new antitubercular drugs are currently being developed, the rapid emergence and spread of drug-resistant strain remain a severe challenge. The CRISPR associated proteins 1 (Cas1), a most conserved endonuclease which is responsible for spacer integration into CRISPR arrays, was found deleted in many specific drug-resistant strains. The function of Cas1 is still unknown in Mycobacterium type III-A CRISPR family. In this study, the Cas1 (Rv2817c) defect was found in 57.14% of clinical isolates. To investigate the function of Cas1 in new spacer acquisition, we challenged Bacillus Calmette–Guérin (BCG) with a mycobacteriophage D29. Newly acquired spacer sequence matches D29 genome was not found by spacer deep-sequencing. We further expressed Cas1 in recombinant Mycobacterium smegmatis. We found that Cas1 increased the sensitivity to multiple anti-tuberculosis drugs by reducing the persistence during drug treatment. We also showed that Cas1 impaired the repair of DNA damage and changed the stress response of Mycobacterium smegmatis. This study provides a further understanding of Cas1 in Mycobacterium tuberculosis complex (MTBC) drug-resistance evolution and a new sight for the tuberculosis treatment.


2004 ◽  
Vol 72 (11) ◽  
pp. 6318-6323 ◽  
Author(s):  
M. Joseph Colston ◽  
Helen C. Hailes ◽  
Evangelos Stavropoulos ◽  
Anne C. Hervé ◽  
Gwenaelle Hervé ◽  
...  

ABSTRACT Tuberculosis remains the leading cause of death among infectious diseases, accounting for more than two million deaths annually. The incidence of the disease is increasing globally, partially because of the resurgence of drug-resistant strains of Mycobacterium tuberculosis. Calixarenes are macrocyclic oligomers, some of which are able to modify the growth of M. tuberculosis in infected cells. Most experimental work has been carried out with Macrocyclon, also known as HOC 12.5EO. In this study, we demonstrate that Macrocyclon is effective in controlling M. tuberculosis infections, and we provide evidence that its effect is partially mediated by an l-arginine-dependent mechanism of macrophage activation that involves the activity of the inducible nitric oxide synthase. We also show that Macrocyclon is effective in athymic and major histocompatibility complex class II−/− mice and synthesized a number of structurally related calixarenes expressing significant antimycobacterial activity.


2015 ◽  
Vol 36 ◽  
pp. 23-26 ◽  
Author(s):  
Jalil Kardan Yamchi ◽  
Mehri Haeili ◽  
Seifu Gizaw Feyisa ◽  
Hossein Kazemian ◽  
Abdolrazagh Hashemi Shahraki ◽  
...  

2010 ◽  
Vol 59 (5) ◽  
pp. 567-572 ◽  
Author(s):  
Fa Ge ◽  
Fanli Zeng ◽  
Siguo Liu ◽  
Na Guo ◽  
Haiqing Ye ◽  
...  

Reports have shown that oleanolic acid (OA), a triterpenoid, exists widely in food, medicinal herbs and other plants, and that it has antimycobacterial activity against the Mycobacterium tuberculosis strain H37Rv (ATCC 27294). In this study it was found that OA had antimycobacterial properties against eight clinical isolates of M. tuberculosis and that the MICs of OA against drug-sensitive and drug-resistant isolates were 50–100 and 100–200 μg ml−1, respectively. The combination of OA with isoniazid (INH), rifampicin (RMP) or ethambutol (EMB) showed favourable synergistic antimycobacterial effects against six drug-resistant strains, with fractional inhibitory concentration indices of 0.121–0.347, 0.113–0.168 and 0.093–0.266, respectively. The combination treatments of OA/INH, OA/RMP and OA/EMB displayed either a synergistic interaction or did not show any interaction against two drug-sensitive strains. No antagonism resulting from the OA/INH, OA/RMP or OA/EMB combination was observed for any of the strains tested. OA exhibited a relatively low cytotoxicity in Vero cells. These results indicate that OA may serve as a promising lead compound for future antimycobacterial drug development.


Sign in / Sign up

Export Citation Format

Share Document