scholarly journals Unpredictable Verticality: Paradigm of a Vertical City

2021 ◽  
Author(s):  
◽  
Joel Lai Siaw Kwan

<p>With the densification of urban cities, our urban concrete jungles are populated by self-supporting and monolithic building blocks such as high rises and skyscrapers, connected only by the ground plan that they sit on. Although the buildings of today’s cities are getting taller, the architecture of today’s cities is still being developed on a two-dimensional template, where ground is the base plane and tall buildings remain independent to one another. This has created a segregation between the claimed internal spaces of our built environment and the public domain of architecture within the vertical realm of our urban fabric.  This thesis speculates what vertical architecture of the future could be like if we challenge the conventional perception of our claimed vertical space, proposing an alternative while exploring the idea of a three-dimensional urban fabric. The research also encapsulates exploration of future technologies that may aid in the feasibility of this type of vertical architecture.  Utilizing a design-led research approach, design experiments were employed to explore different ideologies surrounding futuristic alternatives in approaching vertical architecture. The research explores the proposition through design experiments of three different scales, namely, an installation exploring connectivity through abstraction, a ‘mid-scale’ vertical residence and a vertical city at a public scale. This research was predominantly influenced by the theoretical works of Yona Friedman, Nat Chard, Lebbeus Woods and Cedric Price. Their works were analyzed and merged to generate a hybrid concept for an alternate utilization of vertical space.</p>

2021 ◽  
Author(s):  
◽  
Joel Lai Siaw Kwan

<p>With the densification of urban cities, our urban concrete jungles are populated by self-supporting and monolithic building blocks such as high rises and skyscrapers, connected only by the ground plan that they sit on. Although the buildings of today’s cities are getting taller, the architecture of today’s cities is still being developed on a two-dimensional template, where ground is the base plane and tall buildings remain independent to one another. This has created a segregation between the claimed internal spaces of our built environment and the public domain of architecture within the vertical realm of our urban fabric.  This thesis speculates what vertical architecture of the future could be like if we challenge the conventional perception of our claimed vertical space, proposing an alternative while exploring the idea of a three-dimensional urban fabric. The research also encapsulates exploration of future technologies that may aid in the feasibility of this type of vertical architecture.  Utilizing a design-led research approach, design experiments were employed to explore different ideologies surrounding futuristic alternatives in approaching vertical architecture. The research explores the proposition through design experiments of three different scales, namely, an installation exploring connectivity through abstraction, a ‘mid-scale’ vertical residence and a vertical city at a public scale. This research was predominantly influenced by the theoretical works of Yona Friedman, Nat Chard, Lebbeus Woods and Cedric Price. Their works were analyzed and merged to generate a hybrid concept for an alternate utilization of vertical space.</p>


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 691
Author(s):  
Francisco-José Gallardo-Basile ◽  
Yannick Naunheim ◽  
Franz Roters ◽  
Martin Diehl

Lath martensite is a complex hierarchical compound structure that forms during rapid cooling of carbon steels from the austenitic phase. At the smallest, i.e., ‘single crystal’ scale, individual, elongated domains, form the elemental microstructural building blocks: the name-giving laths. Several laths of nearly identical crystallographic orientation are grouped together to blocks, in which–depending on the exact material characteristics–clearly distinguishable subblocks might be observed. Several blocks with the same habit plane together form a packet of which typically three to four together finally make up the former parent austenitic grain. Here, a fully parametrized approach is presented which converts an austenitic polycrystal representation into martensitic microstructures incorporating all these details. Two-dimensional (2D) and three-dimensional (3D) Representative Volume Elements (RVEs) are generated based on prior austenite microstructure reconstructed from a 2D experimental martensitic microstructure. The RVEs are used for high-resolution crystal plasticity simulations with a fast spectral method-based solver and a phenomenological constitutive description. The comparison of the results obtained from the 2D experimental microstructure and the 2D RVEs reveals a high quantitative agreement. The stress and strain distributions and their characteristics change significantly if 3D microstructures are used. Further simulations are conducted to systematically investigate the influence of microstructural parameters, such as lath aspect ratio, lath volume, subblock thickness, orientation scatter, and prior austenitic grain shape on the global and local mechanical behavior. These microstructural features happen to change the local mechanical behavior, whereas the average stress–strain response is not significantly altered. Correlations between the microstructure and the plastic behavior are established.


2021 ◽  
Vol 7 (1) ◽  
pp. 519-539
Author(s):  
Thiago Minete Cardozo ◽  
Costas Papadopoulos

Abstract Museums have been increasingly investing in their digital presence. This became more pressing during the COVID-19 pandemic since heritage institutions had, on the one hand, to temporarily close their doors to visitors while, on the other, find ways to communicate their collections to the public. Virtual tours, revamped websites, and 3D models of cultural artefacts were only a few of the means that museums devised to create alternative ways of digital engagement and counteract the physical and social distancing measures. Although 3D models and collections provide novel ways to interact, visualise, and comprehend the materiality and sensoriality of physical objects, their mediation in digital forms misses essential elements that contribute to (virtual) visitor/user experience. This article explores three-dimensional digitisations of museum artefacts, particularly problematising their aura and authenticity in comparison to their physical counterparts. Building on several studies that have problematised these two concepts, this article establishes an exploratory framework aimed at evaluating the experience of aura and authenticity in 3D digitisations. This exploration allowed us to conclude that even though some aspects of aura and authenticity are intrinsically related to the physicality and materiality of the original, 3D models can still manifest aura and authenticity, as long as a series of parameters, including multimodal contextualisation, interactivity, and affective experiences are facilitated.


2013 ◽  
Vol 135 (11) ◽  
Author(s):  
Edwin Peraza-Hernandez ◽  
Darren Hartl ◽  
Edgar Galvan ◽  
Richard Malak

Origami engineering—the practice of creating useful three-dimensional structures through folding and fold-like operations on two-dimensional building-blocks—has the potential to impact several areas of design and manufacturing. In this article, we study a new concept for a self-folding system. It consists of an active, self-morphing laminate that includes two meshes of thermally-actuated shape memory alloy (SMA) wire separated by a compliant passive layer. The goal of this article is to analyze the folding behavior and examine key engineering tradeoffs associated with the proposed system. We consider the impact of several design variables including mesh wire thickness, mesh wire spacing, thickness of the insulating elastomer layer, and heating power. Response parameters of interest include effective folding angle, maximum von Mises stress in the SMA, maximum temperature in the SMA, maximum temperature in the elastomer, and radius of curvature at the fold line. We identify an optimized physical realization for maximizing folding capability under mechanical and thermal failure constraints. Furthermore, we conclude that the proposed self-folding system is capable of achieving folds of significant magnitude (as measured by the effective folding angle) as required to create useful 3D structures.


2014 ◽  
Vol 70 (11) ◽  
pp. 1054-1056 ◽  
Author(s):  
Qiang Li ◽  
Hui-Ting Wang

A new cadmium dicyanamide complex, poly[tetramethylphosphonium [μ-chlorido-di-μ-dicyanamido-κ4N1:N5-cadmium(II)]], [(CH3)4P][Cd(NCNCN)2Cl], was synthesized by the reaction of tetramethylphosphonium chloride, cadmium nitrate tetrahydrate and sodium dicyanamide in aqueous solution. In the crystal structure, each CdIIatom is octahedrally coordinated by four terminal N atoms from four anionic dicyanamide (dca) ligands and by two chloride ligands. The dicyanamide ligands play two different roles in the building up of the structure; one role results in the formation of [Cd(dca)Cl]2building blocks, while the other links the building blocks into a three-dimensional structure. The anionic framework exhibits a solvent-accessible void of 673.8 Å3, amounting to 47.44% of the total unit-cell volume. The cavities in the network are occupied by pairs of tetramethylphosphonium cations.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jeffrey E. Melzer ◽  
Euan McLeod

AbstractThe fabrication of three-dimensional (3D) microscale structures is critical for many applications, including strong and lightweight material development, medical device fabrication, microrobotics, and photonic applications. While 3D microfabrication has seen progress over the past decades, complex multicomponent integration with small or hierarchical feature sizes is still a challenge. In this study, an optical positioning and linking (OPAL) platform based on optical tweezers is used to precisely fabricate 3D microstructures from two types of micron-scale building blocks linked by biochemical interactions. A computer-controlled interface with rapid on-the-fly automated recalibration routines maintains accuracy even after placing many building blocks. OPAL achieves a 60-nm positional accuracy by optimizing the molecular functionalization and laser power. A two-component structure consisting of 448 1-µm building blocks is assembled, representing the largest number of building blocks used to date in 3D optical tweezer microassembly. Although optical tweezers have previously been used for microfabrication, those results were generally restricted to single-material structures composed of a relatively small number of larger-sized building blocks, with little discussion of critical process parameters. It is anticipated that OPAL will enable the assembly, augmentation, and repair of microstructures composed of specialty micro/nanomaterial building blocks to be used in new photonic, microfluidic, and biomedical devices.


2014 ◽  
Vol 126 (32) ◽  
pp. 8468-8472 ◽  
Author(s):  
Tanja Nöll ◽  
Holger Schönherr ◽  
Daniel Wesner ◽  
Michael Schopferer ◽  
Thomas Paululat ◽  
...  

2014 ◽  
Vol 919-921 ◽  
pp. 2013-2016 ◽  
Author(s):  
Ya Bing Liu ◽  
Hong Jie Wang ◽  
Hong Kai Zhao

A POM - based organice - inorganic hybrid compound with the chemical formula of[Cu (phen)2]3[W6O19] (phen = 1,10-phenanthroline) (1) has been hydrothermally synthesized andstructurally characterized by the elemental analysis, and single crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic space groupC2/c witha=18.319(4) Å,b= 17.311(4) Å,c= 22.248(4) Å,β= 112.40(3) o,V= 6523(2) Å3,Z= 4, R1= 0.0448, andwR2=0.1218. Compound 1 consists of the [W6O19]3-building blocks and [Cu (phen)2]+metal organic cationic moieties, which are packed together via the extensive hydrogen-bonding interactions to form a three-dimensional supramolecular framework. The adsorption of methylene blue (MB) under UV irradiation with 1 as the heterogeneous adsorbent has been investigated, showing a good adsorptive property of 1 for MB degradation.


2010 ◽  
Vol 49 (13) ◽  
pp. 5971-5976 ◽  
Author(s):  
Hu Zhou ◽  
Ai-Hua Yuan ◽  
Su-Yan Qian ◽  
You Song ◽  
Guo-Wang Diao

Sign in / Sign up

Export Citation Format

Share Document