scholarly journals Using Ecological Niche Modelling to Predict Climate Change Responses of Ten Key Fishery Species in Aotearoa New Zealand

2021 ◽  
Author(s):  
◽  
Amber Brooks

<p>The long-term sustainability and security of food sources for an increasing human population will become more challenging as climate change alters growing and harvesting conditions. Significant infrastructure changes could be required to continue to supply food from traditional sources. Fisheries remain the only major protein supply directly harvested from the wild. This likely makes it the most sensitive primary sector to climate change. Overfishing is an additional concern for harvested species. There is a need to anticipate how marine species may respond to climate change to help inform how management might best be prepared for shifting distributions and productivity levels. The most common response of mobile marine species to changes in climate is an alteration of their geographic distributions and/or range shifts. Predicting changes to a species’ range could promote timely development of more sustainable harvest strategies. Additionally, these predictions could reduce potential conflict when different management areas experience increasing or decreasing catches. Ecological Niche Modelling (ENM) is a helpful approach for predicting the response of key fishery species to climate change scenarios.  The overall aim of this research was to use the maximum entropy method, Maxent, to perform ENM on 10 commercially important fishery species, managed under the Quota management system in Aotearoa (New Zealand). Occurrence data from trawl surveys were used along with climate layers from Bio-ORACLE to estimate the species niche and then predict distributions in four different future climate scenarios, called Representative Concentration Pathway Scenarios (RCPS), in both 2050 and 2100. With little consensus over the best settings and way to apply the Maxent method, hundreds of variations were tried for each species, and the best model chosen from trial experimentation.  In general, Maxent performed well, with evaluation metrics for best models showing little omission error and good discriminatory ability. There was, however, considerable variation between the different species responses to the future climate scenarios. Consistent with other studies, species able to tolerate sub-tropical or temperate conditions tended to expand southward, while subantarctic species generally contracted within their preferred environment. The increasing emissions or ‘business as usual’ climate change scenario consistently presented the most extreme difference from modern predictions. Northern regions of prediction, where sub-tropical or temperate species increased in probability of presence, were often highly uncertain due to novel conditions in future environments. Southern regions were usually less uncertain. Surface temperature consistently influenced base models more so than any other covariates considered, with the exception of bathymetry.  Some predictions showed common areas of relative stability, such as hoki and ling on the southern Chatham Rise, potentially indicating future refugia. The preservation of habitats in the putative refugia may be important for long-term fisheries resilience. Furthermore, most species that showed large predicted declines are currently heavily harvested and managed. Overfishing could compound the effects of climate change and put these fisheries at serious risk of collapse. Identification of potential refugial areas could aid strategy adjustments to fishing practice to help preserve stock viability. Additionally, when some species shift, there are areas where new fisheries may emerge.  This study offers a perspective of what future distributions could be like under different climate scenarios. The ENM predicts that the ‘business as usual’ scenario, where ‘greenhouse gas’ emissions continue to rise throughout the century, will have a negative impact on multiple aspects of distribution. However, in a reduced emissions scenario, less extreme range shifts are predicted. This study has provided a predictive approach to how fisheries in Aotearoa might change. The next step is to determine whether there is any evidence for the beginning of these changes and to consider how fisheries might best adapt.</p>

2021 ◽  
Author(s):  
◽  
Amber Brooks

<p>The long-term sustainability and security of food sources for an increasing human population will become more challenging as climate change alters growing and harvesting conditions. Significant infrastructure changes could be required to continue to supply food from traditional sources. Fisheries remain the only major protein supply directly harvested from the wild. This likely makes it the most sensitive primary sector to climate change. Overfishing is an additional concern for harvested species. There is a need to anticipate how marine species may respond to climate change to help inform how management might best be prepared for shifting distributions and productivity levels. The most common response of mobile marine species to changes in climate is an alteration of their geographic distributions and/or range shifts. Predicting changes to a species’ range could promote timely development of more sustainable harvest strategies. Additionally, these predictions could reduce potential conflict when different management areas experience increasing or decreasing catches. Ecological Niche Modelling (ENM) is a helpful approach for predicting the response of key fishery species to climate change scenarios.  The overall aim of this research was to use the maximum entropy method, Maxent, to perform ENM on 10 commercially important fishery species, managed under the Quota management system in Aotearoa (New Zealand). Occurrence data from trawl surveys were used along with climate layers from Bio-ORACLE to estimate the species niche and then predict distributions in four different future climate scenarios, called Representative Concentration Pathway Scenarios (RCPS), in both 2050 and 2100. With little consensus over the best settings and way to apply the Maxent method, hundreds of variations were tried for each species, and the best model chosen from trial experimentation.  In general, Maxent performed well, with evaluation metrics for best models showing little omission error and good discriminatory ability. There was, however, considerable variation between the different species responses to the future climate scenarios. Consistent with other studies, species able to tolerate sub-tropical or temperate conditions tended to expand southward, while subantarctic species generally contracted within their preferred environment. The increasing emissions or ‘business as usual’ climate change scenario consistently presented the most extreme difference from modern predictions. Northern regions of prediction, where sub-tropical or temperate species increased in probability of presence, were often highly uncertain due to novel conditions in future environments. Southern regions were usually less uncertain. Surface temperature consistently influenced base models more so than any other covariates considered, with the exception of bathymetry.  Some predictions showed common areas of relative stability, such as hoki and ling on the southern Chatham Rise, potentially indicating future refugia. The preservation of habitats in the putative refugia may be important for long-term fisheries resilience. Furthermore, most species that showed large predicted declines are currently heavily harvested and managed. Overfishing could compound the effects of climate change and put these fisheries at serious risk of collapse. Identification of potential refugial areas could aid strategy adjustments to fishing practice to help preserve stock viability. Additionally, when some species shift, there are areas where new fisheries may emerge.  This study offers a perspective of what future distributions could be like under different climate scenarios. The ENM predicts that the ‘business as usual’ scenario, where ‘greenhouse gas’ emissions continue to rise throughout the century, will have a negative impact on multiple aspects of distribution. However, in a reduced emissions scenario, less extreme range shifts are predicted. This study has provided a predictive approach to how fisheries in Aotearoa might change. The next step is to determine whether there is any evidence for the beginning of these changes and to consider how fisheries might best adapt.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dennis Rödder ◽  
Thomas Schmitt ◽  
Patrick Gros ◽  
Werner Ulrich ◽  
Jan Christian Habel

AbstractClimate change impacts biodiversity and is driving range shifts of species and populations across the globe. To understand the effects of climate warming on biota, long-term observations of the occurrence of species and detailed knowledge on their ecology and life-history is crucial. Mountain species particularly suffer under climate warming and often respond to environmental changes by altitudinal range shifts. We assessed long-term distribution trends of mountain butterflies across the eastern Alps and calculated species’ specific annual range shifts based on field observations and species distribution models, counterbalancing the potential drawbacks of both approaches. We also compiled details on the ecology, behaviour and life-history, and the climate niche of each species assessed. We found that the highest altitudinal maxima were observed recently in the majority of cases, while the lowest altitudes of observations were recorded before 1980. Mobile and generalist species with a broad ecological amplitude tended to move uphill more than specialist and sedentary species. As main drivers we identified climatic conditions and topographic variables, such as insolation and solar irradiation. This study provides important evidence for responses of high mountain taxa to rapid climate change. Our study underlines the advantage of combining historical surveys and museum collection data with cutting-edge analyses.


2019 ◽  
Vol 374 (1768) ◽  
pp. 20180186 ◽  
Author(s):  
Jennifer M. Donelson ◽  
Jennifer M. Sunday ◽  
Will F. Figueira ◽  
Juan Diego Gaitán-Espitia ◽  
Alistair J. Hobday ◽  
...  

Climate change is leading to shifts in species geographical distributions, but populations are also probably adapting to environmental change at different rates across their range. Owing to a lack of natural and empirical data on the influence of phenotypic adaptation on range shifts of marine species, we provide a general conceptual model for understanding population responses to climate change that incorporates plasticity and adaptation to environmental change in marine ecosystems. We use this conceptual model to help inform where within the geographical range each mechanism will probably operate most strongly and explore the supporting evidence in species. We then expand the discussion from a single-species perspective to community-level responses and use the conceptual model to visualize and guide research into the important yet poorly understood processes of plasticity and adaptation.This article is part of the theme issue ‘The role of plasticity in phenotypic adaptation to rapid environmental change’.


2021 ◽  
Author(s):  
Sabina Thaler ◽  
Josef Eitzinger ◽  
Gerhard Kubu

&lt;p&gt;Weather-related risks can affect crop growth and yield potentials directly (e.g. heat, frost, drought) and indirectly (e.g. through biotic factors such as pests). Due to climate change, severe shifts of cropping risks may occur, where farmers need to adapt effectively and in time to increase the resilience of existing cropping systems. For example, since the early 21st century, Europe has experienced a series of exceptionally dry and warmer than usual weather conditions (2003, 2012, 2013, 2015, 2018) which led to severe droughts with devastating impacts in agriculture on crop yields and pasture productivity.&lt;/p&gt;&lt;p&gt;Austria has experienced above-average warming in the period since 1880. While the global average surface temperature has increased by almost 1&amp;#176;C, the warming in Austria during this period was nearly 2&amp;#176;C. Higher temperatures, changing precipitation patterns and more severe and frequent extreme weather events will significantly affect weather-sensitive sectors, especially agriculture. Therefore, the development of sound adaptation and mitigation strategies towards a &quot;climate-intelligent agriculture&quot; is crucial to improve the resilience of agricultural systems to climate change and increased climate variability. Within the project AGROFORECAST a set of weather-related risk indicators and tailored recommendations for optimizing crop management options are developed and tested for various forecast or prediction lead times (short term management: 10 days - 6 months; long term strategic planning: climate scenarios) to better inform farmers of upcoming weather and climate challenges.&lt;/p&gt;&lt;p&gt;Here we present trends of various types of long-term weather-related impacts on Austrian crop production under past (1980-2020) and future periods (2035-2065). For that purpose, agro-climatic risk indicators and crop production indicators are determined in selected case study regions with the help of models. We use for the past period Austrian gridded weather data set (INCA) as well as different regionalized climate scenarios of the Austrian Climate Change Projections &amp;#214;KS15. The calculation of the agro-climatic indicators is carried out by the existing AGRICLIM model and the GIS-based ARIS software, which was developed for estimating the impact of adverse weather conditions on crops. The crop growth model AQUACROP is used for analysing soil-crop water balance parameters, crop yields and future crop water demand.&lt;/p&gt;&lt;p&gt;Depending on the climatic region, a more or less clear shift in the various agro-climatic indices can be expected towards 2050, e.g. the number of &quot;heat-stress-days&quot; for winter wheat increases significantly in eastern Austria. Furthermore, a decreasing trend in maize yield is simulated, whereas a mean increase in yield of spring barley and winter wheat can be expected under selected scenarios. Other agro-climatic risk indicators analysed include pest algorithms, risks from frost occurrence, overwintering conditions, climatic crop growing conditions, field workability and others, which can add additional impacts on crop yield variability, not considered by crop models.&lt;/p&gt;


2021 ◽  
Vol 18 (24) ◽  
pp. 6567-6578
Author(s):  
Ádám T. Kocsis ◽  
Qianshuo Zhao ◽  
Mark J. Costello ◽  
Wolfgang Kiessling

Abstract. Anthropogenic climate change is increasingly threatening biodiversity on a global scale. Rich spots of biodiversity, regions with exceptionally high endemism and/or number of species, are a top priority for nature conservation. Terrestrial studies have hypothesized that rich spots occur in places where long-term climate change was dampened relative to other regions. Here we tested whether biodiversity rich spots are likely to provide refugia for organisms during anthropogenic climate change. We assessed the spatial distribution of both historic (absolute temperature change and climate change velocities) and projected climate change in terrestrial, freshwater, and marine rich spots. Our analyses confirm the general consensus that global warming will impact almost all rich spots of all three realms and suggest that their characteristic biota is expected to witness similar forcing to other areas, including range shifts and elevated risk of extinction. Marine rich spots seem to be particularly sensitive to global warming: they have warmed more, have higher climate velocities, and are projected to experience higher future warming than non-rich-spot areas. However, our results also suggest that terrestrial and freshwater rich spots will be somewhat less affected than other areas. These findings emphasize the urgency of protecting a comprehensive and representative network of biodiversity-rich areas that accommodate species range shifts under climate change.


2016 ◽  
Vol 107 (4) ◽  
pp. 419-430 ◽  
Author(s):  
B.M. Carvalho ◽  
E.F. Rangel ◽  
M.M. Vale

AbstractVector-borne diseases are exceptionally sensitive to climate change. Predicting vector occurrence in specific regions is a challenge that disease control programs must meet in order to plan and execute control interventions and climate change adaptation measures. Recently, an increasing number of scientific articles have applied ecological niche modelling (ENM) to study medically important insects and ticks. With a myriad of available methods, it is challenging to interpret their results. Here we review the future projections of disease vectors produced by ENM, and assess their trends and limitations. Tropical regions are currently occupied by many vector species; but future projections indicate poleward expansions of suitable climates for their occurrence and, therefore, entomological surveillance must be continuously done in areas projected to become suitable. The most commonly applied methods were the maximum entropy algorithm, generalized linear models, the genetic algorithm for rule set prediction, and discriminant analysis. Lack of consideration of the full-known current distribution of the target species on models with future projections has led to questionable predictions. We conclude that there is no ideal ‘gold standard’ method to model vector distributions; researchers are encouraged to test different methods for the same data. Such practice is becoming common in the field of ENM, but still lags behind in studies of disease vectors.


2007 ◽  
Vol 104 (18) ◽  
pp. 7461-7465 ◽  
Author(s):  
Ronald E. Thresher ◽  
J. A. Koslow ◽  
A. K. Morison ◽  
D. C. Smith

The oceanographic consequences of climate change are increasingly well documented, but the biological impacts of this change on marine species much less so, in large part because of few long-term data sets. Using otolith analysis, we reconstructed historical changes in annual growth rates for the juveniles of eight long-lived fish species in the southwest Pacific, from as early as 1861. Six of the eight species show significant changes in growth rates during the last century, with the pattern differing systematically with depth. Increasing temperatures near the ocean surface correlate with increasing growth rates by species found in depths <250 m, whereas growth rates of deep-water (>1,000 m) species have declined substantially during the last century, which correlates with evidence of long-term cooling at these depths. The observations suggest that global climate change has enhanced some elements of productivity of the shallow-water stocks but also has reduced the productivity, and possibly the resilience, of the already slow-growing deep-water species.


2020 ◽  
Vol 22 ◽  
pp. e01018 ◽  
Author(s):  
Yu Xu ◽  
Bin Wang ◽  
Xue Zhong ◽  
Biao Yang ◽  
Jindong Zhang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document