scholarly journals 3D modeling of Unmanned Aerial Vehicles Tilt Photogrammetry

2020 ◽  
Vol 4 (4) ◽  
Author(s):  
Lingyun Li

Unmanned Aerial Vehicles (UAV) tilt photogrammetry technology can quickly acquire image data in a short time. This technology has been widely used in all walks of life with the rapid development in recent years especially in the rapid acquisition of high-resolution remote sensing images, because of its advantages of high efficiency, reliability, low cost and high precision. Fully using the UAV tilt photogrammetry technology, the construction image progress can be observed by stages, and the construction site can be reasonably and optimally arranged through three-dimensional modeling to create a civilized, safe and tidy construction environment.

Author(s):  
T. Zhou ◽  
L. Lv ◽  
J. Liu ◽  
J. Wan

Abstract. Aiming at the phenomenon that the traditional measurement methods cannot complete large-scale measurement in a short time, and the image quality obtained by remote sensing in cloudy and rainy areas is difficult to meet the demand, this paper puts forward the idea of using UAV tilt photography to build three-dimensional modeling of urban real scene. The UAV tilt photography technology is used to collect the image data of about 200 km2 in Wuzhishan City. By laying a small number of ground image control points, the aerial triangulation is used to establish the connection, and the three-dimensional modeling of the collected data is carried out. Through the field verification to verify the attribute information of ground objects, the accuracy is verified by using CORS system field coordinate collection. The results show that the ground property and mathematical accuracy of UAV tilt photography model meet the requirements, and can be effectively used in real 3D modeling.


Robotica ◽  
2021 ◽  
pp. 1-27
Author(s):  
Taha Elmokadem ◽  
Andrey V. Savkin

Abstract Unmanned aerial vehicles (UAVs) have become essential tools for exploring, mapping and inspection of unknown three-dimensional (3D) tunnel-like environments which is a very challenging problem. A computationally light navigation algorithm is developed in this paper for quadrotor UAVs to autonomously guide the vehicle through such environments. It uses sensors observations to safely guide the UAV along the tunnel axis while avoiding collisions with its walls. The approach is evaluated using several computer simulations with realistic sensing models and practical implementation with a quadrotor UAV. The proposed method is also applicable to other UAV types and autonomous underwater vehicles.


2021 ◽  
Vol 11 (15) ◽  
pp. 6831
Author(s):  
Yue Chen ◽  
Jian Lu

With the rapid development of road traffic, real-time vehicle counting is very important in the construction of intelligent transportation systems (ITSs). Compared with traditional technologies, the video-based method for vehicle counting shows great importance and huge advantages in its low cost, high efficiency, and flexibility. However, many methods find difficulty in balancing the accuracy and complexity of the algorithm. For example, compared with traditional and simple methods, deep learning methods may achieve higher precision, but they also greatly increase the complexity of the algorithm. In addition to that, most of the methods only work under one mode of color, which is a waste of available information. Considering the above, a multi-loop vehicle-counting method under gray mode and RGB mode was proposed in this paper. Under gray and RGB modes, the moving vehicle can be detected more completely; with the help of multiple loops, vehicle counting could better deal with different influencing factors, such as driving behavior, traffic environment, shooting angle, etc. The experimental results show that the proposed method is able to count vehicles with more than 98.5% accuracy while dealing with different road scenes.


2021 ◽  
Vol 11 (13) ◽  
pp. 5772
Author(s):  
Dawid Lis ◽  
Adam Januszko ◽  
Tadeusz Dobrocinski

The purpose of this article is to present and discuss the results of a non-standard unnamed aerial vehicle construction with a constant cross-section square-shaped avionic profile. Based on the model’s in-air observed maneuverability, the research of avionic construction behavior was carried out in a water tunnel. The results show the model’s specific lift capabilities in comparison to classical avionic constructions. The characteristic results of the lift coefficient showed that the unmanned aerial vehicle presents favorable features than classic avionic constructions. The model was created with the prospect of using it in the future for dual-use purposes, where unmanned aerial vehicles are currently experiencing very rapid development. When creating the prototype, the focus was on low production cost, as well as convenience in operation. The development of this type of breakthrough avionic solution, which shows extraordinary maneuverability, may contribute to increasing the popularity and, above all, the availability of unmanned aerial vehicles for the largest possible group of recipients because of high avionic properties in relation to the technical construction complexity.


Author(s):  
David Scheiman ◽  
Raymond Hoheisel ◽  
Daniel J Edwards ◽  
Andrew Paulsen ◽  
Justin Lorentzen ◽  
...  

2019 ◽  
Vol 8 (6) ◽  
pp. 285 ◽  
Author(s):  
Balletti ◽  
Ballarin

In recent decades, 3D acquisition by laser scanning or digital photogrammetry has become one of the standard methods of documenting cultural heritage, because it permits one to analyze the shape, geometry, and location of any artefact without necessarily coming into contact with it. The recording of three-dimensional metrical data of an asset allows one to preserve and monitor, but also to understand and explain the history and cultural heritage shared. In essence, it constitutes a digital archive of the state of an artefact, which can be used for various purposes, be remodeled, or kept safely stored. With the introduction of 3D printing, digital data can once again take on material form and become physical objects from the corresponding mathematical models in a relatively short time and often at low cost. This possibility has led to a different consideration of the concept of virtual data, no longer necessarily linked to simple visual fruition. The importance of creating high-resolution physical copies has been reassessed in light of different types of events that increasingly threaten the protection of cultural heritage. The aim of this research is to analyze the critical issues in the production process of the replicas, focusing on potential problems in data acquisition and processing and on the accuracy of the resulting 3D printing. The metric precision of the printed model with 3D technology are fundamental for everything concerning geomatics and must be related to the same characteristics of the digital model obtained through the survey analysis.


Author(s):  
Д.В. Горбунов ◽  
Т.В. Гавриленко

Разработана математическая и симуляционная модель для моделирования биомеханических движений конечности человека. Разработанный алгоритм модели базируется на биологическом представлении о включении и выключении в процессе удержания положения конечности отдельных мышц или их групп. Работа модели осуществляется за счет генерации случайных чисел (в математической форме симмуляционной модели отсутствуют статические величины). Сравнительный анализ экспериментальных и модельных данных показывает высокую эффективность работы симуляционной модели. Созданная симуляционная модель позволяет изучать принципы работы нервно-мышечной системы. Также модель является масштабируемой, что позволит в дальнейшем перейти к трехмерному моделированию для изучения механизмов самоорганизации биосистемы на уровне и нервно-мышечной системы, и центральной нервной системы. Mathematical and simulation model has been developed for modeling the biomechanical movements of a human limb. The developed model algorithm is based on the biological presentation and shutdown in the process of maintaining the positions of the final individual muscles or their groups. Work in models is due to statistical values. A comparative analysis of experimental and model data shows the high efficiency of the simulation model. The created simulation model allows to study the principles of the neuromuscular system. This model is scalable, which will allow us to switch to three-dimensional modeling to study the signs of self-organization of biosystems at the level of the neuromuscular system and central nervous system.


Sign in / Sign up

Export Citation Format

Share Document