Anatomical Variability of Fascial-Muscle Formations of the Thorax in 4-6-Month Human Fetuses

2021 ◽  
Vol 6 (5) ◽  
pp. 134-140
Author(s):  
T. V. Khmara ◽  
◽  
I. I. Okrym ◽  
M. Yu. Leka ◽  
I. D. Kiiun ◽  
...  

The development of rational accesses and methods of surgical interventions to the chest walls, muscles and vascular-nerve formations of the chest involves clarifying data on the topography of fascia, superficial and deep muscles of the chest at different stages of human ontogenesis. The purpose of the study. Identification of macromicroscopic structure and topography of fascia and chest muscles in 4-6-month human fetuses. Materials and methods. The study was performed using microscopy of a series of consecutive histological sections of 29 human embryos of 81.0-230.0 mm parietal-coccygeal length, production of three-dimensional reconstruction models and morphometry. Results and discussion. In some early fetuses, and in isolated cases in the same fetus, there is anatomical variability of the pectoralis major muscle, characterized by asymmetry of shape, size and topography of individual parts of the right and left pectoralis major muscles. The underdevelopment of the individual muscle bundles of the sternocostal part of the pectoralis major muscle, hypoplasia of the internal intervertebral muscles, aplasia of the external intercostal membrane, internal intercostal and subcostal muscles, transverse muscles of the chest is described. Conclusion. In human fetuses of 4-6 months old there is anatomical variability of the chest muscles, characterized by bilateral asymmetry, variability of shape, size and topography of both their individual parts and muscle as a whole. In early human fetuses, thoracic fascia is a rather thin structural plate, in the structure of which there is no layering. Intervertebral spaces at the level of rib cartilage are filled with internal intervertebral muscles, the fibers of which near the edges of the thorax have a vertical direction, and from the point of connection of the rib cartilage to the thorax – oblique. In the gap between the external and internal intervertebral muscles of fascia as such is not manifested, but only a small layer of loose fiber is determined, in which the vascular-nerve bundles pass. In the fetuses of 6 months, the endothorаcic fascia on the posterior wall of the chest is somewhat thickened, split into separate plates and forms fascial cases for vascular-nerve formations located near the spinal column

2009 ◽  
Vol 22 (4) ◽  
pp. 500-508 ◽  
Author(s):  
Lillia Fung ◽  
Brian Wong ◽  
Kajeandra Ravichandiran ◽  
Anne Agur ◽  
Tim Rindlisbacher ◽  
...  

2020 ◽  
Vol 787 (12) ◽  
pp. 21-24
Author(s):  
Y.A. Bozhko ◽  
◽  
K.A. Lapunova ◽  

The article reflects the authors view on the technical and aesthetic side of the use of face bricks in the architecture of our country. The term brick design combines such indicators of brickwork as the color, size and surface of the brick itself, as well as the type of masonry and seam parameters. Unfortunately, the analysis of the current situation shows that the culture of consumption of face bricks in Russia remains at a low level, which is due to the lack of proper knowledge and insufficient number of qualified master masons. The main goal of brick design development is to popularize various types of three-dimensional masonry and reveal the potential of using bricks as a basic unit. The comparison shows the architecture of European cities, which does not differ in the complexity of architectural forms, but has advantages in the form of unusual masonry, color combinations, vertical direction of masonry and other elements of technical aesthetics. The use of bricks in various levels of brick design will allow you to avoid using architectural decoration on the facades of buildings, while preserving its authenticity and individuality. The brick, as a basic unit, is self-sufficient and is able to fulfill not only its functional role, but also its aesthetic one. In this situation, a necessary and decisive action will be competent communication with industry specialists, architects and designers, leading manufacturers and technologists who realize that we have a unique material that does not need additional wrapping when used efficiently.


MedAlliance ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 61-68

The pectoralis major is a widely used muscle in reconstruction surgery for replacement soft tissue defects of a head, neck, thorax, upper limbs and restoration of muscle active function. The peculiarities of anatomy of the pectoralis major makes it possible to divide the muscle into several segments with their own innervations and supply and use them independently from each other. This article describes the anatomy of the pectoralis major and the opportunity for clinical applications of different segments of this muscle. The authors demonstrate the result of the restoration of shoulder and elbow flexion in a patient with arthrogryposis due to simultaneous transfer of the proximal part of pectoralis major to the anterior part of the deltoid muscle and the distal part of pectoralis major to the biceps with good functional results. The article will be useful for plastic surgeons, orthopedic surgeons and physiotherapists.


Author(s):  
Valeria Vendries ◽  
Tamas Ungi ◽  
Jordan Harry ◽  
Manuela Kunz ◽  
Jana Podlipská ◽  
...  

Abstract Purpose Osteophytes are common radiographic markers of osteoarthritis. However, they are not accurately depicted using conventional imaging, thus hampering surgical interventions that rely on pre-operative images. Studies have shown that ultrasound (US) is promising at detecting osteophytes and monitoring the progression of osteoarthritis. Furthermore, three-dimensional (3D) ultrasound reconstructions may offer a means to quantify osteophytes. The purpose of this study was to compare the accuracy of osteophyte depiction in the knee joint between 3D US and conventional computed tomography (CT). Methods Eleven human cadaveric knees were pre-screened for the presence of osteophytes. Three osteoarthritic knees were selected, and then, 3D US and CT images were obtained, segmented, and digitally reconstructed in 3D. After dissection, high-resolution structured light scanner (SLS) images of the joint surfaces were obtained. Surface matching and root mean square (RMS) error analyses of surface distances were performed to assess the accuracy of each modality in capturing osteophytes. The RMS errors were compared between 3D US, CT and SLS models. Results Average RMS error comparisons for 3D US versus SLS and CT versus SLS models were 0.87 mm ± 0.33 mm (average ± standard deviation) and 0.95 mm ± 0.32 mm, respectively. No statistical difference was found between 3D US and CT. Comparative observations of imaging modalities suggested that 3D US better depicted osteophytes with cartilage and fibrocartilage tissue characteristics compared to CT. Conclusion Using 3D US can improve the depiction of osteophytes with a cartilaginous portion compared to CT. It can also provide useful information about the presence and extent of osteophytes. Whilst algorithm improvements for automatic segmentation and registration of US are needed to provide a more robust investigation of osteophyte depiction accuracy, this investigation puts forward the potential application for 3D US in routine diagnostic evaluations and pre-operative planning of osteoarthritis.


Author(s):  
Yanyan Ma ◽  
Peng Ding ◽  
Lanlan Li ◽  
Yang Liu ◽  
Ping Jin ◽  
...  

AbstractHeart diseases remain the top threat to human health, and the treatment of heart diseases changes with each passing day. Convincing evidence shows that three-dimensional (3D) printing allows for a more precise understanding of the complex anatomy associated with various heart diseases. In addition, 3D-printed models of cardiac diseases may serve as effective educational tools and for hands-on simulation of surgical interventions. We introduce examples of the clinical applications of different types of 3D printing based on specific cases and clinical application scenarios of 3D printing in treating heart diseases. We also discuss the limitations and clinically unmet needs of 3D printing in this context.


2021 ◽  
Vol 121 ◽  
pp. 110416
Author(s):  
Jun Umehara ◽  
Yusaku Sato ◽  
Tome Ikezoe ◽  
Masahide Yagi ◽  
Shusuke Nojiri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document