About the Development of Brick-Design in Russia

2020 ◽  
Vol 787 (12) ◽  
pp. 21-24
Author(s):  
Y.A. Bozhko ◽  
◽  
K.A. Lapunova ◽  

The article reflects the authors view on the technical and aesthetic side of the use of face bricks in the architecture of our country. The term brick design combines such indicators of brickwork as the color, size and surface of the brick itself, as well as the type of masonry and seam parameters. Unfortunately, the analysis of the current situation shows that the culture of consumption of face bricks in Russia remains at a low level, which is due to the lack of proper knowledge and insufficient number of qualified master masons. The main goal of brick design development is to popularize various types of three-dimensional masonry and reveal the potential of using bricks as a basic unit. The comparison shows the architecture of European cities, which does not differ in the complexity of architectural forms, but has advantages in the form of unusual masonry, color combinations, vertical direction of masonry and other elements of technical aesthetics. The use of bricks in various levels of brick design will allow you to avoid using architectural decoration on the facades of buildings, while preserving its authenticity and individuality. The brick, as a basic unit, is self-sufficient and is able to fulfill not only its functional role, but also its aesthetic one. In this situation, a necessary and decisive action will be competent communication with industry specialists, architects and designers, leading manufacturers and technologists who realize that we have a unique material that does not need additional wrapping when used efficiently.

Author(s):  
Kuengmi Choi ◽  
Jungil Jun ◽  
Youngshil Ryoo ◽  
Sunmi Park

A bra use can reduce physiological and physical functions because of clothing pressure, which can be a problem for new senior women starting to lose physical function. The present study presents a bra top design development method for promoting new senior women’s physical activity by identifying problems related to bras’ effects on women’s health and minimizing clothing pressure. The analysis utilized the 3D scan data of 42 adult women (age range: 50s) from the 5th Size Korea Project. Bra top design elements were extracted based on new senior consumers’ needs. We developed an average wireframe reflecting the new senior’s physical characteristics, and a standard body form was developed through surface modeling. To produce a consumer-oriented bra with a body shaping effect and reduced clothing pressure that would not affect physical activities, a three-dimensional pattern was developed applying an optimal reduction rate of 80%. To verify the bra’s adequacy for the body form of new senior women, two market-available bras were selected and fit-compared to the developed product. The developed bra received higher expert appearance evaluation and 3D virtual clothing evaluation scores. This study is significant because by using virtual fitting technology, it provides foundational data to quantify the quality of fashion products.


2000 ◽  
Author(s):  
H. J. Kang ◽  
B. Zheng ◽  
C. X. Lin ◽  
M. A. Ebadian

Abstract The velocity distributions inside a centrifugal separator with outside and inside diameters of 152.4 mm (6″) and 76.2 mm (3″), respectively, have been investigated experimentally and numerically to obtain optimum separation efficiency. Two 12.7 mm (1/2-inch) holes were drilled on the external surface of the separator to measure the velocity distribution in the separator. Two direction velocities (tangential direction along the cylinder surface and axial along the vertical direction) were measured to compare with the numerical simulation results. A 6060P Pitot probe was employed to obtain the velocity distribution. The dust samples (a mixture of steel particle and dust) from the dust collection box were analyzed using a Phillips XL30 Scanning Electron Microscope. FLUENT code is used as the numerical solver for this fully three-dimensional problem. The fluid flow in the separator is assumed to be steady and incompressible turbulent flow. The standard k–ε model was employed in this study. Non-uniform, unstructured grids are chosen to discretize the entire computation domain. Almost 100,000 cells are used to discretize the whole separator. The constant velocity profile is imposed on the inlet plane. The pressure boundary condition is adopted at outlet plane. Comparing the velocity distribution and separation efficiency from the experiment and the numerical modeling shows that the experimental results and the estimated data agree fairly well and with a deviation within ±10%.


2014 ◽  
Vol 8 (6) ◽  
pp. 2255-2274 ◽  
Author(s):  
N. Calonne ◽  
F. Flin ◽  
C. Geindreau ◽  
B. Lesaffre ◽  
S. Rolland du Roscoat

Abstract. We carried out a study to monitor the time evolution of microstructural and physical properties of snow during temperature gradient metamorphism: a snow slab was subjected to a constant temperature gradient in the vertical direction for 3 weeks in a cold room, and regularly sampled in order to obtain a series of three-dimensional (3-D) images using X-ray microtomography. A large set of properties was then computed from this series of 3-D images: density, specific surface area, correlation lengths, mean and Gaussian curvature distributions, air and ice tortuosities, effective thermal conductivity, and intrinsic permeability. Whenever possible, specific attention was paid to assess these properties along the vertical and horizontal directions, and an anisotropy coefficient defined as the ratio of the vertical over the horizontal values was deduced. The time evolution of these properties, as well as their anisotropy coefficients, was investigated, showing the development of a strong anisotropic behavior during the experiment. Most of the computed physical properties of snow were then compared with two analytical estimates (self-consistent estimates and dilute beds of spheroids) based on the snow density, and the size and anisotropy of the microstructure through the correlation lengths. These models, which require only basic microstructural information, offer rather good estimates of the properties and anisotropy coefficients for our experiment without any fitting parameters. Our results highlight the interplay between the microstructure and physical properties, showing that the physical properties of snow subjected to a temperature gradient cannot be described accurately using only isotropic parameters such as the density and require more refined information. Furthermore, this study constitutes a detailed database on the evolution of snow properties under a temperature gradient, which can be used as a guideline and a validation tool for snow metamorphism models at the micro- or macroscale.


Author(s):  
Shinichiro Kajii ◽  
Naoki Sawa ◽  
Nobuhiro Kunitake ◽  
K. Umeki

A three-dimensional (3D) seismic isolation system for FBR building is under development. The proposed vertical isolation system consists form hydraulic cylinders with water-based liquid and accumulators to support large vertical static load and to realize low natural frequency in the vertical direction. For horizontal isolation, laminated rubber isolator or sliding type isolator will be combined. Because the major part of the feasibility of this isolation system depends on the sealing function and durability of the hydraulic cylinder, a series of feasibility tests of the hydraulic cylinder have been conducted to verify the reliability against seismic load and seismic motion. This paper describes the specification of the seismic isolations system, seismic response characteristics and the results of the feasibility tests of the seal. This study was performed as part of a government sponsored R&D project on 3D seismic isolation.


Author(s):  
J. Lord ◽  
M. Zayed

This paper reviews the design development of a 985' high free-standing communications tower recently constructed in San Francisco. Included is a description of the structural configuration of the
 tower and the criteria by which it was designed. The dynamic characteristics of a three-dimensional linear elastic mathematical computer model, devised to represent the physical structure, are presented. The dynamic response of this computer model to various levels of
ground shaking, including both horizontal and vertical excitations,
 are summarized, evaluated and compared to the seismic force levels prescribed by the 1969 edition of the San Francisco Building Code.
 Also included in the comparison are the responses derived for the tower from wind tunnel studies and static wind design criteria.


Author(s):  
Alexandros Chasoglou ◽  
Panagiotis Tsirikoglou ◽  
Anestis Kalfas ◽  
Reza Abhari

Abstract The current work describes the design, development and testing of a miniature fast response aerodynamic probe (FRAP) with 4 sensors (4S), able to perform measurements in unsteady three-dimensional flow field. Moreover, the calibration and first results with the newly developed probe is also provided. The miniature FRAP-4S demonstrates a 3 mm tip diameter, which represents a 25% reduction in diameter size, in comparison to a first generation FRAP-4S, without any loss in terms of measurement bandwidth. The 3 mm outer casing of the probe is additively manufactured with a high-precision binder jetting technique. In terms of aerodynamic performance, the probe demonstrates high angular sensitivity up to at least ± 18° incidence angle in both directions. To evaluate the measurement accuracy of the newly developed FRAP-4S, measurements are performed at the Laboratory for Energy Conversion (LEC) in both a round axisymmetric jet and an one-and-a-half stage, unshrouded and highly-loaded axial turbine configuration. Turbulence measurements performed with the miniature FRAP-4S are compared against hot-wire studies in round free-jets found in the literature. Good agreement in both trends but also absolute values is demonstrated. Moreover, the performance of the probe is compared against traditional instrumentation developed at LEC, namely miniature pneumatic and FRAP-2S probes. The results indicate that the FRAP-4S, despite its larger size in comparison to the other probes tested, can resolve the main flow patterns, while the highest deviations occur in the presence of highly skewed and sheared flows. Furthermore, the additively manufactured probe was proven to be robust after more than 50 hours of testing in representative turbine environment configuration. Finally, it should be highlighted that the newly developed FRAP reduces measurement time by a factor of three in comparison to FRAP-2S, which directly translates to reduced development time and thus cost, during turbomachinery development phase.


2021 ◽  
Vol 6 (5) ◽  
pp. 134-140
Author(s):  
T. V. Khmara ◽  
◽  
I. I. Okrym ◽  
M. Yu. Leka ◽  
I. D. Kiiun ◽  
...  

The development of rational accesses and methods of surgical interventions to the chest walls, muscles and vascular-nerve formations of the chest involves clarifying data on the topography of fascia, superficial and deep muscles of the chest at different stages of human ontogenesis. The purpose of the study. Identification of macromicroscopic structure and topography of fascia and chest muscles in 4-6-month human fetuses. Materials and methods. The study was performed using microscopy of a series of consecutive histological sections of 29 human embryos of 81.0-230.0 mm parietal-coccygeal length, production of three-dimensional reconstruction models and morphometry. Results and discussion. In some early fetuses, and in isolated cases in the same fetus, there is anatomical variability of the pectoralis major muscle, characterized by asymmetry of shape, size and topography of individual parts of the right and left pectoralis major muscles. The underdevelopment of the individual muscle bundles of the sternocostal part of the pectoralis major muscle, hypoplasia of the internal intervertebral muscles, aplasia of the external intercostal membrane, internal intercostal and subcostal muscles, transverse muscles of the chest is described. Conclusion. In human fetuses of 4-6 months old there is anatomical variability of the chest muscles, characterized by bilateral asymmetry, variability of shape, size and topography of both their individual parts and muscle as a whole. In early human fetuses, thoracic fascia is a rather thin structural plate, in the structure of which there is no layering. Intervertebral spaces at the level of rib cartilage are filled with internal intervertebral muscles, the fibers of which near the edges of the thorax have a vertical direction, and from the point of connection of the rib cartilage to the thorax – oblique. In the gap between the external and internal intervertebral muscles of fascia as such is not manifested, but only a small layer of loose fiber is determined, in which the vascular-nerve bundles pass. In the fetuses of 6 months, the endothorаcic fascia on the posterior wall of the chest is somewhat thickened, split into separate plates and forms fascial cases for vascular-nerve formations located near the spinal column


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1801 ◽  
Author(s):  
Heng Wang ◽  
Zhaoping Zhong

The present paper studied the mixing characteristics of biomass and sands in a fluidized bed. A three dimensional model is calculated on the basis of computational fluid dynamics (CFD) and the discrete element method (DEM), while the lab-scale experiments under similar conditions are conducted. To investigate the mixing behavior of biomass and sands, particle distribution, particles time averaged kinetic motion and the Lacey index are analyzed and the effects of gas velocity and biomass size are discussed. Gas velocity provides the basic motion for particle movement and biomass particles gain a lot more kinetic motion than sands due to their large size. The biomass mixing process in a horizontal direction is more sensitive to gas velocity than in a vertical direction. Biomass size could slightly affect the mixing quality and a well mixing in fluidized bed could be reached if the size of biomass to sands is smaller than 4 times.


2019 ◽  
Vol 79 ◽  
pp. 02009
Author(s):  
Haigang Wang ◽  
Tongchun Qin ◽  
Haipeng Guo ◽  
Juyan Zhu ◽  
Yunlong Wang ◽  
...  

In all ground fissures in Beijing, Gaoliying Ground Fissure has characteristics of highly activity, and it cause serious damages on constructoins. With the distribution as well as the development of land subsidence and the change of the groundwater level, a series of work has been conducted to explain the mechanism of the formation of Gaoliying Ground Fissure. For example, field damage investigations and trench observations were used to define the affected distance of ground fissure; three-dimensional deformation was monitored to determine active characteristic of ground fissure. This paper points out that Gaoliying ground fissure is controlled by Huangzhuang-Gaoliying Fault, which mainly moves in the vertical direction. The rapid decrease of the ground water level greatly increases the development of ground fissure. The distance of damaged zones affected by ground fissure in the hanging-wall of the fault reaches 49.5m, and the distance of damaged zones in the footwall of the fault is 17.5 m. A suggested safety distance of type-one and type-two buildings is 100 m. For type-three buildings, the suggested safety distance is 80 m.


Author(s):  
Karol Galik ◽  
Patrick Smolinski ◽  
Stephen F. Conti ◽  
Mark C. Miller

A three-dimensional finite element model was constructed of the distal tibia and fibula and a semi-constrained ankle prosthesis (Agility™ system). Contact elements were used at the interface between the talar component and the polyethylene liner and the proximal tibia and fibular were loaded in the in vertical direction. The minimal thickness of the polyethylene liner was varied from 3 mm to 8 mm in 1 mm increments. The results showed that the liner contact pressure in the sagittal plane mid-line decreased from 20 MPa to 14 MPa with increasing thickness while the medial edge contact pressure increased from 26 MPa to 30 MPa.


Sign in / Sign up

Export Citation Format

Share Document