NEUROPSYCHOLOGICAL CHANGES IN PATIENTS WITH A CONSEQUENCE OF TRAUMATIC BRAIN INJURY

2020 ◽  
Vol 3 (1) ◽  
pp. 44-46
Author(s):  
Istatillo Shodjalilov ◽  
◽  
Saoda Igamova ◽  
Aziza Djurabekova

The incidence of cognitive impairment in TBI is high, depending on the severity. At the same time, psychopathological symptoms in the form of asthenia, increased anxiety and depression are encountered among patients with TBI. The work studied the relationship between cognitive and psychopathological symptoms in patients with TBI using neuropsychological testing on scales.

CNS Spectrums ◽  
2015 ◽  
Vol 20 (5) ◽  
pp. 463-465 ◽  
Author(s):  
Michelle Rydon-Grange ◽  
Rudi Coetzer

In addition to the well-known cognitive impairment following traumatic brain injury (TBI), neuropsychiatric sequelae are often reported as well. Although not the most common neuropsychiatric consequence of TBI, obsessive-compulsive disorder (OCD) has been associated with TBI. However, diagnosing new onset OCD secondary to TBI is complicated by the potential for cognitive impairment secondary to TBI masquerading as OCD. In particular, memory difficulties and executive dysfunction may be confused as representing obsessions and compulsions. Research in this area, which could guide clinical practice, remains limited. In addition to using Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V) criteria, neuropsychological testing and collateral interviews may help clinicians when considering differential diagnoses in this complex area of neuropsychiatry.


2021 ◽  
pp. 028418512199831
Author(s):  
Ming-Liang Wang ◽  
Xiao-Er Wei ◽  
Meng-Meng Yu ◽  
Wen-Bin Li

Background A significant number of patients with mild traumatic brain injury (mTBI) would experience cognitive deficit. Purpose To investigate the brain structural changes in sub-acute mTBI by diffusion kurtosis imaging (DKI) and volumetric analysis, and to assess the relationship between brain structural changes and cognitive functions. Material and Methods A total of 23 patients with sub-acute mTBI and 24 control participants were recruited. All the participants underwent examinations of neuropsychological tests, DKI, and magnetic resonance imaging (MRI)-based morphological scans. Images were investigated using whole brain-based analysis and further regions of interest-based analysis for subcortical nuclei. The neuropsychological tests were compared between the mTBI and the control group. Correlation analysis was performed to examine the relationship between gray matter (GM) volume, DKI parameters, and cognitive functions. Results Compared with control participants, mTBI patients performed worse in the domains of verbal memory, attention and executive function ( P < 0.05). No regional GM volume differences were observed between the mTBI and control groups ( P > 0.05). Using DKI, patients with mTBI showed lower mean kurtosis (MK) in widespread white matter (WM) regions and several subcortical nuclei ( P < 0.05), and higher mean diffusivity (MD) in the right pallidum ( P < 0.05). Lower MK value of multiple WM regions and several subcortical nuclei correlated with cognitive impairment ( P < 0.05). Conclusion DKI was sensitive in detecting brain microstructural changes in patients with sub-acute mTBI showing lower MK value in widespread WM regions and several subcortical nuclei, which were statistically associated with cognitive deficits.


2019 ◽  
Author(s):  
Maria Calvillo ◽  
Andrei Irimia

Traumatic brain injury (TBI) can be serious partly due to the challenges of assessing and treating its neurocognitive and affective sequelae. The effects of a single TBI may persist for years and can limit patients’ activities due to somatic complaints (headaches, vertigo, sleep disturbances, nausea, light or sound sensitivity), affective sequelae (post-traumatic depressive symptoms, anxiety, irritability, emotional instability) and mild cognitive impairment (MCI, including social cognition disturbances, attention deficits, information processing speed decreases, memory degradation and executive dysfunction). Despite a growing amount of research, study comparison and knowledge synthesis in this field are problematic due to TBI heterogeneity and factors like injury mechanism, age at or time since injury. The relative lack of standardization in neuropsychological assessment strategies for quantifying sequelae adds to these challenges, and the proper administration of neuropsychological testing relative to the relationship between TBI, MCI and neuroimaging has not been reviewed satisfactorily. Social cognition impairments after TBI (e.g., disturbed emotion recognition, theory of mind impairment, altered self-awareness) and their neuroimaging correlates have not been explored thoroughly. This review consolidates recent findings on the cognitive and affective consequences of TBI in relation to neuropsychological testing strategies, to neurobiological and neuroimaging correlates, and to patient age at and assessment time after injury. All cognitive domains recognized by the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) are reviewed, including social cognition, complex attention, learning and memory, executive function, language and perceptual-motor function. Affect and effort are additionally discussed owing to their relationships to cognition and to their potentially confounding effects. Our findings highlight non-negligible cognitive and affective impairments following TBI, their gravity often increasing with injury severity. Future research should study (A) language, executive and perceptual-motor function (whose evolution post-TBI remains under-explored), (B) the effects of age at and time since injury, and (C) cognitive impairment severity as a function of injury severity. Such efforts should aim to develop and standardize batteries for cognitive subdomains—rather than only domains—with high ecological validity. Additionally, they should utilize multivariate techniques like factor analysis and related methods to clarify which cognitive subdomains or components are indeed measured by standardized tests.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Jia-cheng Gu ◽  
Hong Wu ◽  
Xing-zhao Chen ◽  
Jun-feng Feng ◽  
Guo-yi Gao ◽  
...  

External ventricular drainage (EVD) is widely used in patients with a traumatic brain injury (TBI). However, the EVD weaning trial protocol varies and insufficient studies focus on the intracranial pressure (ICP) during the weaning trial. We aimed to establish the relationship between ICP during an EVD weaning trial and the outcomes of TBI. We enrolled 37 patients with a TBI with an EVD from July 2018 to September 2019. Among them, 26 were allocated to the favorable outcome group and 11 to the unfavorable outcome group (death, post-traumatic hydrocephalus, persistent vegetative state, and severe disability). Groups were well matched for sex, pupil reactivity, admission Glasgow Coma Scale score, Marshall computed tomography score, modified Fisher score, intraventricular hemorrhage, EVD days, cerebrospinal fluid output before the weaning trial, and the complications. Before and during the weaning trial, we recorded the ICP at 1-hour intervals to calculate the mean ICP, delta ICP, and ICP burden, which was defined as the area under the ICP curve. There were significant between-group differences in the age, surgery types, and intensive care unit days (p=0.045, p=0.028, and p=0.004, respectively). During the weaning trial, 28 (75.7%) patients had an increased ICP. Although there was no significant difference in the mean ICP before and during the weaning trial, the delta ICP was higher in the unfavorable outcome group (p=0.001). Moreover, patients who experienced death and hydrocephalus had a higher ICP burden, which was above 20 mmHg (p=0.016). Receiver operating characteristic analyses demonstrated the predictive ability of these variables (area under the curve AUC=0.818 [p=0.002] for delta ICP and AUC=0.758 [p=0.038] for ICP burden>20 mmHg). ICP elevation is common during EVD weaning trials in patients with TBI. ICP-related parameters, including delta ICP and ICP burden, are significant outcome predictors. There is a need for larger prospective studies to further explore the relationship between ICP during EVD weaning trials and TBI outcomes.


Sign in / Sign up

Export Citation Format

Share Document