scholarly journals Implementasi Visible Light Communication (VLC) Pada Sistem Komunikasi

Author(s):  
ARSYAD RAMADHAN DARLIS ◽  
LITA LIDYAWATI ◽  
DECY NATALIANA

ABSTRAKPerkembangan teknologi telah menunjukkan peningkatan yang cukup signifikan, terutama untuk bidang komunikasi. Hal ini terbukti dengan banyaknya media komunikasi baik itu nirkabel dan kabel. Pada penelitian ini dimanfaatkan cahaya tampak sebagai media dalam sistem komunikasi, dimana selama ini cahaya hanya digunakan sebagai penerangan saja. Visible Light Communication (VLC) adalah sebuah teknologi komunikasi yang memanfaatkan pancaran cahaya tampak dari lampu pada sistem komunikasi. Sistem komunikasi visible light ini terdiri dari pemancar dan penerima. Pemancar terdiri dari Light Emitting Dioda, audio transformator dan baterai, dan pada penerima terdiri dari solar cell dan photodioda, amplifier dan catu daya. Hal-hal yang dapat mempengaruhi hasil output sistem komunikasi adalah jarak, terang cahaya lampu pemancar dan cahaya luar. Pada penelitian ini, komunikasi menggunakan VLC dapat dilakukan pada jarak pengiriman data sebesar 2,5 m dan dengan range frekuensi 600 Hz sampai dengan 45 kHz dimana data dapat disalurkan dengan baik.Kata kunci: Visible light, Sistem komunikasi, Light Emitting Dioda, solar cell, photodioda.ABSTRACTTechnological developments have shown a significant increase, especially in the field of communication. This is proved by the many communications media using both wireless and wired. This study utilized the visible light as a medium of communication system, which has been used as an illumination light only. Visible Light Communication (VLC) is a communication technology which utilize visible light emitted from the lamp in the communication system. The visible light communication system consists of a transmitter and receiver. The transmitter consists of a Light Emitting Diode, audio transformer and battery, and the receiver consists of a solar cell and a photodiode, amplifier and power supply. Things that can affect the output of the communication system is the distance, bright light and outdoor light. In the research, the results that obtained from this study is the data transmission distance of 2.5 m and a frequency range of 600 Hz to 45 kHz data can be routed properly.Keywords:  Visible light, Communication systems, Light Emitting Dioda, solar cell, photodioda.

Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 210
Author(s):  
Yun-Cheng Yang ◽  
Chien-Hung Yeh ◽  
Shien-Kuei Liaw ◽  
Chi-Wai Chow ◽  
Wei-Hung Hsu ◽  
...  

To increase the data capacity of a light-emitting diode (LED) based visible light communication (VLC) transmission, a polarization-division-multiplexing (PMD) green (G)- and blue (B)- light-based transmitter (Tx) module is demonstrated here. It was demonstrated that we can achieve 1200 and 1120 Mbps VLC capacities based on dual-polarized G- and a B-LED based light wave after 3 and 4 m free-space link lengths, respectively, at exceedingly low illuminance. Based on the presented VLC system, paired G-LEDs or B-LEDs with dual-polarization can also be applied on the VLC-Tx side for doubling and delivering VLC data. According to the obtained results, the largest polarization offset angle of 50° between two polarizers (POLs) can be allowed experimentally to provide optimal VLC traffic. Moreover, the relationships of polarization offset, the illuminance of LED and maximum achieved VLC capacity are also performed and analyzed.


2014 ◽  
Vol 12 (1) ◽  
pp. 010605-10608 ◽  
Author(s):  
Nan Chi Nan Chi ◽  
Yuanquan Wang Yuanquan Wang ◽  
Yiguang Wang Yiguang Wang ◽  
Xingxing Huang Xingxing Huang ◽  
Xiaoyuan Lu Xiaoyuan Lu

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6836
Author(s):  
Roser Viñals ◽  
Olga Muñoz ◽  
Adrián Agustín ◽  
Josep Vidal

In this paper, we design linear precoders for the downlink of a visible light communication (VLC) system that simultaneously serves multiple users. Instead of using phosphor-coated white light-emitting diodes (PWLEDs), we focus on Red-Green-Blue light-emitting diodes (RGB-LEDs) that allow modulating three separate data streams on the three primary colors of the RGB-LEDs. For this system, we design a zero-forcing (ZF) precoder that maximizes the weighted sum rate for a multilevel pulse amplitude modulation (M-PAM). The precoding design in RGB-based systems presents some challenges due to the system constraints, such as the limited power, the non-negative amplitude constraints per light-emitting diode (LED), and the need to guarantee white light emission while transmitting with RGB-LEDs. For comparison purposes, we also consider the ZF design for a PWLED-based system and evaluate the performance of both a PWLED- and an RGB-based system.


Author(s):  
Suriza A.Z. ◽  
Sharmin Akter ◽  
M. Shahnan

<p class="thesis-abstract">Visible light communication (VLC) is an emerging and promising new technology in optical wireless communication (OWC). However, dimming has an adverse effect on the performance of visible light communication system. In visible light communication (VLC) system, illumination and communication both are provided simultaneously using a light emitting diode (LED). The specification for lighting is application specific for which dimming control is required. There are different modulation techniques for dimming control in visible light communication. In this thesis, NRZ-OOK modulation method and 4-QAM-OFDM modulation techniques are investigated for different dimming range, transmission distance, beam divergence angle and bit rate. The result shows that for 13m link range, 5Gb/s data speed is achievable for the 4-QAM-OFDM scheme. The analysis of this research is executed only based on system parameters. The scope of this research excluded the following parameters which are shadowing, mobility, multipath interference and inter-symbol interference for multicarrier modulation. These are the related research topic which can be investigated for future work.</p>


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Xinyue Guo ◽  
Shuangshuang Li ◽  
Yang Guo

With the rapid development of light-emitting diode, visible light communication (VLC) has become a candidate technology for the next generation of high-speed indoor wireless communication. In this paper, we investigate the performance of the 32-quadrature amplitude modulation (32-QAM) constellation shaping schemes for the first time, where two special circular constellations, named Circular (4, 11, 17) and Circular (1, 5, 11, 15), and a triangular constellation are proposed based on the Shannon’s criterion. Theoretical analysis indicates that the triangular constellation scheme has the largest minimum Euclidian distance while the Circular (4, 11, 17) scheme achieves the lowest peak-to-average power ratio (PAPR). Experimental results show that the bit error rate performance is finally decided by the value of PAPR in the VLC system due to the serious nonlinearity of the LED, where the Circular (4, 11, 17) scheme always performs best under the 7% preforward error correction threshold of 3.8 × 10−3 with 62.5Mb/s transmission data rate and 1-meter transmission distance.


Sign in / Sign up

Export Citation Format

Share Document