scholarly journals Deteksi Parasit Plasmodium pada Citra Mikroskopis Hapusan Darah dengan Metode Deep Learning

Author(s):  
NOR KUMALASARI CAECAR PRATIWI ◽  
NUR IBRAHIM ◽  
YUNENDAH NUR FU’ADAH ◽  
SYAMSUL RIZAL

ABSTRAKParasit plasmodium merupakan makhluk protozoa bersel satu yang menjadi penyebab penyakit malaria. Plasmodium ini dibawa melalui gigitan nyamuk anopheles betina. Dalam World Malaria Report 2015 menyatakan bahwa malaria telah menyerang sedikit 106 negara di dunia. Di Indonesia sendiri, Papua, NTT dan Maluku merupakan wilayah dengan kasus positif malaria tertinggi. Malaria telah menjadi masalah yang serius, sehingga keberadaan sistem diagnosa otomatis yang cepat dan handal sangat diperlukan untuk proses perlambatan penyeberan dan pembasmian epidemi. Dalam penelitian ini akan dirancang sistem yang mampu mendeteksi parasit malaria pada citra mikroskopis darah menggunakan arsitekur Convolutional Neural Network (CNN) sederhana. Hasil pengujian menunjukkan bahwa metode yang diusulkan memberikan presisi dan recall sebesar 0,98 dan f1-score sebesar 0,96 serta akurasi 95,83%.Kata kunci: parasit, malaria, convolutional neural network, citra mikroskopis ABSTRACTPlasmodium parasites are single-celled protozoan creatures that cause malaria. Plasmodium is carried through the bite of a female Anopheles mosquito. The World Malaria Report 2015 states that malaria has attacked at least 106 countries in the world. In Indonesia itself, Papua, NTT and Maluku are the regions with the highest positive cases of malaria. Malaria has become a serious problem, so the existence of a fast and reliable automatic diagnosis system is indispensable for the process of slowing down the spread and eliminating the epidemic. In this study, a system capable of detecting malaria parasites in microscopic images of blood will be designed using a simple Convolutional Neural Network (CNN) architecture. The test results show that the proposed method provides precision and recall of 0,98, f1-values of 0.96 and accuracy of 95,83%.Keywords: parasites, malaria, convolutional neural network, microscopic image

Author(s):  
Sanjay Saxena ◽  
Sudip Paul ◽  
Adhesh Garg ◽  
Angana Saikia ◽  
Amitava Datta

Computational neuroscience is inspired by the mechanism of the human brain. Neural networks have reformed machine learning and artificial intelligence. Deep learning is a type of machine learning that teaches computers to do what comes naturally to individuals: acquire by example. It is inspired by biological brains and became the essential class of models in the field of machine learning. Deep learning involves several layers of computation. In the current scenario, researchers and scientists around the world are focusing on the implementation of different deep models and architectures. This chapter consists the information about major architectures of deep network. That will give the information about convolutional neural network, recurrent neural network, multilayer perceptron, and many more. Further, it discusses CNN (convolutional neural network) and its different pretrained models due to its major requirements in visual imaginary. This chapter also deliberates about the similarity of deep model and architectures with the human brain.


Geophysics ◽  
2021 ◽  
pp. 1-63
Author(s):  
Nam Pham ◽  
Weichang Li

We propose a method to combine unsupervised and supervised deep learning approaches for seismic ground roll attenuation. The method consists of three components that have physical meaning and motivation. The first component is a convolutional neural network to separate a seismic record into ground roll and signal, while minimizing the residual between the sum of the generated signal and ground roll from two sub-networks and the input seismic record. The second component creates a maximum separation of signal and ground roll in the FK domain, by training a supervised classifier. The third component is a convolutional neural network mapping signal to ground roll, which overcomes the problem of finding appropriate masks in traditional methods. Each component in our method is closely related to and motivated by the wave characteristics of the ground roll. Test results on field seismic records demonstrate the effectiveness of combining these components in preventing signal leakage and removing ground roll from seismic data.


Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2508
Author(s):  
Muhammad Zubair Rehman ◽  
Nazri Mohd. Nawi ◽  
Mohammad Arshad ◽  
Abdullah Khan

Pashto is one of the most ancient and historical languages in the world and is spoken in Pakistan and Afghanistan. Various languages like Urdu, English, Chinese, and Japanese have OCR applications, but very little work has been conducted on the Pashto language in this perspective. It becomes more difficult for OCR applications to recognize handwritten characters and digits, because handwriting is influenced by the writer’s hand dynamics. Moreover, there was no publicly available dataset for handwritten Pashto digits before this study. Due to this, there was no work performed on the recognition of Pashto handwritten digits and characters combined. To achieve this objective, a dataset of Pashto handwritten digits consisting of 60,000 images was created. The trio deep learning Convolutional Neural Network, i.e., CNN, LeNet, and Deep CNN were trained and tested with both Pashto handwritten characters and digits datasets. From the simulations, the Deep CNN achieved 99.42 percent accuracy for Pashto handwritten digits, 99.17 percent accuracy for handwritten characters, and 70.65 percent accuracy for combined digits and characters. Similarly, LeNet and CNN models achieved slightly less accuracies (LeNet; 98.82, 99.15, and 69.82 percent and CNN; 98.30, 98.74, and 66.53 percent) for Pashto handwritten digits, Pashto characters, and the combined Pashto digits and characters recognition datasets, respectively. Based on these results, the Deep CNN model is the best model in terms of accuracy and loss as compared to the other two models.


Author(s):  
Syeda Sumbul Hossain ◽  
Yeasir Arafat ◽  
Md. Ekram Hossain

Online news blogs and websites are becoming influential to any society as they accumulate the world in one place. Aside from that, online news blogs and websites have efficient strategies in grabbing readers’ attention by the headlines, that being so to recognize the sentiment orientation or polarity of the news headlines for avoiding misinterpretation against any fact. In this study, we have examined 3383 news headlines created by five different global newspapers. In the interest of distinguishing the sentiment polarity (or sentiment orientation) of news headlines, we have trained our model by seven machine learning and two deep learning algorithms. Finally, their performance was compared. Among them, Bernoulli naïve Bayes and Convolutional Neural Network (CNN) achieved higher accuracy than other machine learning and deep learning algorithms, respectively. Such a study will help the audience in determining their impression against or for any leader or governance; and will provide assistance to recognize the most indifferent newspaper or news blogs.


2019 ◽  
Author(s):  
Seoin Back ◽  
Junwoong Yoon ◽  
Nianhan Tian ◽  
Wen Zhong ◽  
Kevin Tran ◽  
...  

We present an application of deep-learning convolutional neural network of atomic surface structures using atomic and Voronoi polyhedra-based neighbor information to predict adsorbate binding energies for the application in catalysis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Young-Gon Kim ◽  
Sungchul Kim ◽  
Cristina Eunbee Cho ◽  
In Hye Song ◽  
Hee Jin Lee ◽  
...  

AbstractFast and accurate confirmation of metastasis on the frozen tissue section of intraoperative sentinel lymph node biopsy is an essential tool for critical surgical decisions. However, accurate diagnosis by pathologists is difficult within the time limitations. Training a robust and accurate deep learning model is also difficult owing to the limited number of frozen datasets with high quality labels. To overcome these issues, we validated the effectiveness of transfer learning from CAMELYON16 to improve performance of the convolutional neural network (CNN)-based classification model on our frozen dataset (N = 297) from Asan Medical Center (AMC). Among the 297 whole slide images (WSIs), 157 and 40 WSIs were used to train deep learning models with different dataset ratios at 2, 4, 8, 20, 40, and 100%. The remaining, i.e., 100 WSIs, were used to validate model performance in terms of patch- and slide-level classification. An additional 228 WSIs from Seoul National University Bundang Hospital (SNUBH) were used as an external validation. Three initial weights, i.e., scratch-based (random initialization), ImageNet-based, and CAMELYON16-based models were used to validate their effectiveness in external validation. In the patch-level classification results on the AMC dataset, CAMELYON16-based models trained with a small dataset (up to 40%, i.e., 62 WSIs) showed a significantly higher area under the curve (AUC) of 0.929 than those of the scratch- and ImageNet-based models at 0.897 and 0.919, respectively, while CAMELYON16-based and ImageNet-based models trained with 100% of the training dataset showed comparable AUCs at 0.944 and 0.943, respectively. For the external validation, CAMELYON16-based models showed higher AUCs than those of the scratch- and ImageNet-based models. Model performance for slide feasibility of the transfer learning to enhance model performance was validated in the case of frozen section datasets with limited numbers.


2021 ◽  
Vol 13 (2) ◽  
pp. 274
Author(s):  
Guobiao Yao ◽  
Alper Yilmaz ◽  
Li Zhang ◽  
Fei Meng ◽  
Haibin Ai ◽  
...  

The available stereo matching algorithms produce large number of false positive matches or only produce a few true-positives across oblique stereo images with large baseline. This undesired result happens due to the complex perspective deformation and radiometric distortion across the images. To address this problem, we propose a novel affine invariant feature matching algorithm with subpixel accuracy based on an end-to-end convolutional neural network (CNN). In our method, we adopt and modify a Hessian affine network, which we refer to as IHesAffNet, to obtain affine invariant Hessian regions using deep learning framework. To improve the correlation between corresponding features, we introduce an empirical weighted loss function (EWLF) based on the negative samples using K nearest neighbors, and then generate deep learning-based descriptors with high discrimination that is realized with our multiple hard network structure (MTHardNets). Following this step, the conjugate features are produced by using the Euclidean distance ratio as the matching metric, and the accuracy of matches are optimized through the deep learning transform based least square matching (DLT-LSM). Finally, experiments on Large baseline oblique stereo images acquired by ground close-range and unmanned aerial vehicle (UAV) verify the effectiveness of the proposed approach, and comprehensive comparisons demonstrate that our matching algorithm outperforms the state-of-art methods in terms of accuracy, distribution and correct ratio. The main contributions of this article are: (i) our proposed MTHardNets can generate high quality descriptors; and (ii) the IHesAffNet can produce substantial affine invariant corresponding features with reliable transform parameters.


Sign in / Sign up

Export Citation Format

Share Document