Genetic diversity and principal component analysis for agronomic and technological characterization of sweet sorghum germplasm under Egyptian conditions

Author(s):  
Fouz Abo Elenen F. M. ◽  
Samar. A.M. Helmy ◽  
Eid. M. Mehareb ◽  
Noran. A. M. Bassiony
Author(s):  
S.R. Singh ◽  
S. Rajan ◽  
Dinesh Kumar ◽  
V.K. Soni

Background: Dolichos bean occupies a unique position among the legume vegetables of Indian origin for its high nutritive value and wider climatic adaptability. Despite its wide genetic diversity, no much effort has been undertaken towards genetic improvement of this vegetable crop. Knowledge on genetic variability is an essential pre-requisite as hybrid between two diverse parental lines generates broad spectrum of variability in segregating population. The current study aims to assess the genetic diversity in dolichos genotypes to make an effective selection for yield improvement.Methods: Twenty genotypes collected from different regions were evaluated during year 2016-17 and 2017-18. Data on twelve quantitative traits was analysed using principal component analysis and single linkage cluster analysis for estimation of genetic diversity.Result: Principal component analysis revealed that first five principal components possessed Eigen value greater than 1, cumulatively contributed greater than 82.53% of total variability. The characters positively contributing towards PC-I to PC-V may be considered for dolichos improvement programme as they are major traits involved in genetic variation of pod yield. All genotypes were grouped into three clusters showing non parallelism between geographic and genetic diversity. Cluster-I was best for earliness and number of cluster/plant. Cluster-II for vine length, per cent fruit set, pod length, pod width, pod weight and number of seed /pod, cluster III for number of pods/cluster and pod yield /plant. Selection of parent genotypes from divergent cluster and component having more than one positive trait of interest for hybridization is likely to give better progenies for development of high yielding varieties in Dolichos bean.


Author(s):  
Waqar Qureshi ◽  
Francesca Cura ◽  
Andrea Mura

Fretting wear is a quasi-static process in which repeated relative surface movement of components results in wear and fatigue. Fretting wear is quite significant in the case of spline couplings which are frequently used in the aircraft industry to transfer torque and power. Fretting wear depends on materials, pressure distribution, torque, rotational speeds, lubrication, surface finish, misalignment between spline shafts, etc. The presence of so many factors makes it difficult to conduct experiments for better models of fretting wear and it is the case whenever a mathematical model is sought from experimental data which is prone to noisy measurements, outliers and redundant variables. This work develops a principal component analysis based method, using a criterion which is insensitive to outliers, to realize a better design and interpret experiments on fretting wear. The proposed method can be extended to other cases too.


Author(s):  
Deepak Gupta ◽  
Suresh Muralia ◽  
N.K. Gupta ◽  
Sunita Gupta ◽  
M.L. Jakhar ◽  
...  

Background: Mungbean is a short duration grain legume widely grown in south and Southeast Asia. The extent of variability through Principal Component Analysis (PCA) and cluster analysis in promising mungbean genotypes should be known for possible yield improvement. A study was undertaken to work out the extent of variability among twenty four mungbean genotypes through cluster analysis and Principal Component Analysis (PCA). Methods: The experiment was laid out in a randomized block design with three replications during kharif 2018 and 2019 at the experimental field of Agricultural Research Station, Navgaon (Alwar) under rainfed condition. Result: Principal component analysis revealed that the first three main PCAs amounted 78.80% of the total variation among genotypes for different traits. Out of total principal components, PC1 accounts for maximum variability in the data with respect to succeeding components. Number of branches per plant (28.62%), number of clusters per plant (23.55%) and seed yield (15.58%) showed maximum per cent contribution towards total genetic divergence on pooled basis. Cluster analysis showed that genotypes fall into seven different clusters and their inter and intra cluster distance showed genetic diversity between different genotypes. The maximum number of genotypes i.e., 8 was found in cluster II followed by cluster III comprising of 6 genotypes. Genotypes RMG-1138 and IPM-02-03 representing the mono genotypic cluster signifies that it can be the most diverse variety and it would be the appropriate genotype for hybridization with ones present in other clusters to tailor the agriculturally important traits and ultimately to boost the seed yield in mungbean under rainfed conditions.


Sign in / Sign up

Export Citation Format

Share Document