scholarly journals Super-Resolution-Based DOA Estimation with Wide Array Distance and Extrapolation for Vital FMCW Radar

2021 ◽  
Vol 21 (1) ◽  
pp. 23-34
Author(s):  
Sangdong Kim ◽  
Bongseok Kim ◽  
Youngseok Jin ◽  
Jonghun Lee

This paper proposes a super-resolution-based direction-of-arrivals (DOA) estimation with wide array distance and extrapolation for vital frequency-modulated continuous-wave (FMCW) radar. Most super-resolution algorithms employ the distance between adjacent arrays of half a wavelength, i.e., λ/2. Meanwhile, in the case of narrow field of view of FMCW radar, the resolution of the angle is maintained by increasing the spacing between the arrays even if the number of arrays decreases. In order to employ these characteristics of array spacing and resolution, the proposed algorithm confirms whether or not to use the case where the distance between the adjacent arrays is greater than λ/2. In the case of an array distance >λ/2, a super-resolution algorithm is performed to obtain the enhanced DOA resolution. Moreover, the proposed algorithm virtually generates data between antennae by using extrapolation in order to further improve the performance of the resolution. The simulation results show that the proposed algorithm achieves the results of root-mean-square error similar to conventional super-resolution algorithms while maintaining low complexity. In order to further verify the performance of the proposed estimation algorithm, we demonstrate its employment in practice: experiments in a chamber room and an indoor room were conducted.

2021 ◽  
Vol 21 (3) ◽  
pp. 236-245
Author(s):  
Bongseok Kim ◽  
Youngseok Jin ◽  
Youngdoo Choi ◽  
Jonghun Lee ◽  
Sangdong Kim

This paper proposes low-complexity super-resolution detection for range-vital Doppler estimation frequency-modulated continuous wave (FMCW) radar. In regards to vital radar, and in order to estimate joint range and vital Doppler information such as the human heartbeat and respiration, two-dimensional (2D) detection algorithms such as 2D-FFT (fast Fourier transform) and 2D-MUSIC (multiple signal classification) are required. However, due to the high complexity of 2D full-search algorithms, it is difficult to apply this process to low-cost vital FMCW systems. In this paper, we propose a method to estimate the range and vital Doppler parameters by using 1D-FFT and 1D-MUSIC algorithms, respectively. Among 1D-FFT outputs for range detection, we extract 1D-FFT results based solely on human target information with phase variation of respiration for each chirp; subsequently, the 1D-MUSIC algorithm is employed to obtain accurate vital Doppler results. By reducing the dimensions of the estimation algorithm from 2D to 1D, the computational burden is reduced. In order to verify the performance of the proposed algorithm, we compare the Monte Carlo simulation and root-mean-square error results. The simulation and experiment results show that the complexity of the proposed algorithm is significantly lower than that of an algorithm detecting signals in several regions.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4295 ◽  
Author(s):  
Bong-seok Kim ◽  
Youngseok Jin ◽  
Jonghun Lee ◽  
Sangdong Kim

This paper proposes a low complexity multiple-signal-classifier (MUSIC)-based direction-of-arrival (DOA) detection algorithm for frequency-modulated continuous-wave (FMCW) vital radars. In order to reduce redundant complexity, the proposed algorithm employs characteristics of distance between adjacent arrays having trade-offs between field of view (FOV) and resolution performance. First, the proposed algorithm performs coarse DOA estimation using fast Fourier transform. On the basis of the coarse DOA estimation, the number of channels as input of the MUSIC algorithm are selected. If the estimated DOA is smaller than 30°, it implies that there is an FOV margin. Therefore, the proposed algorithm employs only half of the channels, that is, it is the same as doubling the spacing between arrays. By doing so, the proposed algorithm achieves more than 40% complexity reduction compared to the conventional MUSIC algorithm while achieving similar performance. By experiments, it is shown that the proposed algorithm despite the low complexity is enable to distinguish the adjacent DOA in a practical environment.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4018
Author(s):  
Bong-seok Kim ◽  
Youngseok Jin ◽  
Jonghun Lee ◽  
Sangdong Kim

This paper proposes a high-efficiency super-resolution frequency-modulated continuous-wave (FMCW) radar algorithm based on estimation by fast Fourier transform (FFT). In FMCW radar systems, the maximum number of samples is generally determined by the maximum detectable distance. However, targets are often closer than the maximum detectable distance. In this case, even if the number of samples is reduced, the ranges of targets can be estimated without degrading the performance. Based on this property, the proposed algorithm adaptively selects the number of samples used as input to the super-resolution algorithm depends on the coarsely estimated ranges of targets using the FFT. The proposed algorithm employs the reduced samples by the estimated distance by FFT as input to the super resolution algorithm instead of the maximum number of samples set by the maximum detectable distance. By doing so, the proposed algorithm achieves the similar performance of the conventional multiple signal classification algorithm (MUSIC), which is a representative of the super resolution algorithms while the performance does not degrade. Simulation results demonstrate the feasibility and performance improvement provided by the proposed algorithm; that is, the proposed algorithm achieves average complexity reduction of 88% compared to the conventional MUSIC algorithm while achieving its similar performance. Moreover, the improvement provided by the proposed algorithm was verified in practical conditions, as evidenced by our experimental results.


2017 ◽  
Vol 2017 ◽  
pp. 1-28 ◽  
Author(s):  
Yun-Seong Cho ◽  
Jeong-Min Seo ◽  
Joon-Ho Lee

We address the performance analysis of the maximum likelihood (ML) direction-of-arrival (DOA) estimation algorithm in the case of azimuth/elevation estimation of two incident signals using the uniform circular array (UCA). Based on the Taylor series expansion and approximation, we get explicit expressions of the root mean square errors (RMSEs) of the azimuths and elevations. The validity of the derived expressions is shown by comparing the analytic results with the simulation results. The derivation in this paper is further verified by illustrating the consistency of the analytic results with the Cramer-Rao lower bound (CRLB).


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 608 ◽  
Author(s):  
Bong-seok Kim ◽  
Youngseok Jin ◽  
Sangdong Kim ◽  
Jonghun Lee

This paper proposes a low-complexity frequency-modulated continuous wave (FMCW) surveillance radar algorithm using random dual chirps in order to overcome the blind-speed problem and reduce the computational complexity. In surveillance radar algorithm, the most widely used moving target indicator (MTI) algorithm is proposed to effectively remove clutter. However, the MTI algorithm has a so-called ‘blind-speed problem’ that cannot detect a target of a specific velocity. In this paper, we try to solve the blind-speed problem of MTI algorithm by randomly selecting two beat signals selected for MTI for each frame. To further reduce the redundant complexity, the proposed algorithm first performs one-dimensional fast Fourier transform (FFT) for range detection and performs multidimensional FFT only when it is determined that a target exists at each frame. The simulation results show that despite low complexity, the proposed algorithm detects moving targets well by avoiding the problem of blind speed. Furthermore, the effectiveness of the proposed algorithm was verified by performing an experiment using the FMCW radar system in a real environment.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3609
Author(s):  
Hyeonjin Chung ◽  
Young Mi Park ◽  
Sunwoo Kim

A super-resolution direction-of-arrival (DoA) estimation algorithm that employs a co-prime array and positive atomic norm minimization (ANM) is proposed. To exploit larger array cardinality, the co-prime array vector is constructed by arranging elements of a correlation matrix. The positive ANM is a technique that can enhance resolution when the coefficients of the atoms are the positive real numbers. A novel optimization problem is proposed to ensure the coefficients of the atoms are the positive real numbers, and the positive ANM is employed after solving the optimization problem. The simulation results show that the proposed algorithm achieves high resolution and has lower complexity than the other ANM-based super-resolution DoA estimation algorithm.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Sangdong Kim ◽  
Bongseok Kim ◽  
Jonghun Lee

Low-complexity-based reduced-dimension–multiple-signal classification (RD-MUSIC) is proposed with extrapolation for joint time delay of arrivals (TOA) and direction of arrivals (DOA) at automotive frequency-modulated continuous-wave (FMCW) radar systems. When a vehicle is driving on the road, the automotive FMCW radar can estimate the position of multiple other vehicles, because it can estimate multiple parameters, such as TOA and DOA. Over time, the requirement of the accuracy and resolution parameters of automotive FMCW radar is increasing. To accurately estimate the parameters of multiple vehicles, such as range and angle, it is difficult to use a low-resolution algorithm, such as the two-dimensional fast Fourier transform. To improve parameter estimation performance, high-resolution algorithms, such as the 2D-MUSIC, are required. However, the conventional high-resolution methods have a high complexity and, thus, are not applicable to a real-time radar system for a vehicle. Therefore, in this work, a low-complexity RD-MUSIC with extrapolation algorithm is proposed to have a resolution similar to that of a high-resolution algorithm to estimate the position of other vehicles. Compared with conventional low complexity high resolution, in experimental results, the proposed method had better performance.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3043 ◽  
Author(s):  
Weike Zhang ◽  
Xi Chen ◽  
Kaibo Cui ◽  
Tao Xie ◽  
Naichang Yuan

In order to improve the angle measurement performance of a coprime linear array, this paper proposes a novel direction-of-arrival (DOA) estimation algorithm for a coprime linear array based on the multiple invariance estimation of signal parameters via rotational invariance techniques (MI-ESPRIT) and a lookup table method. The proposed algorithm does not require a spatial spectrum search and uses a lookup table to solve ambiguity, which reduces the computational complexity. To fully use the subarray elements, the DOA estimation precision is higher compared with existing algorithms. Moreover, the algorithm avoids the matching error when multiple signals exist by using the relationship between the signal subspace of two subarrays. Simulation results verify the effectiveness of the proposed algorithm.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Feng-Gang Yan ◽  
Shuai Liu ◽  
Jun Wang ◽  
Ming Jin

Most popular techniques for super-resolution direction of arrival (DOA) estimation rely on an eigen-decomposition (EVD) or a singular value decomposition (SVD) computation to determine the signal/noise subspace, which is computationally expensive for real-time applications. A two-step root multiple signal classification (TS-root-MUSIC) algorithm is proposed to avoid the complex EVD/SVD computation using a uniform linear array (ULA) based on a mild assumption that the number of signals is less than half that of sensors. The ULA is divided into two subarrays, and three noise-free cross-correlation matrices are constructed using data collected by the two subarrays. A low-complexity linear operation is derived to obtain a rough noise subspace for a first-step DOA estimate. The performance is further enhanced in the second step by using the first-step result to renew the previous estimated noise subspace with a slightly increased complexity. The new technique can provide close root mean square error (RMSE) performance to root-MUSIC with reduced computational burden, which are verified by numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document