scholarly journals Low-Complexity Super-Resolution Detection for Range-Vital Doppler Estimation FMCW Radar

2021 ◽  
Vol 21 (3) ◽  
pp. 236-245
Author(s):  
Bongseok Kim ◽  
Youngseok Jin ◽  
Youngdoo Choi ◽  
Jonghun Lee ◽  
Sangdong Kim

This paper proposes low-complexity super-resolution detection for range-vital Doppler estimation frequency-modulated continuous wave (FMCW) radar. In regards to vital radar, and in order to estimate joint range and vital Doppler information such as the human heartbeat and respiration, two-dimensional (2D) detection algorithms such as 2D-FFT (fast Fourier transform) and 2D-MUSIC (multiple signal classification) are required. However, due to the high complexity of 2D full-search algorithms, it is difficult to apply this process to low-cost vital FMCW systems. In this paper, we propose a method to estimate the range and vital Doppler parameters by using 1D-FFT and 1D-MUSIC algorithms, respectively. Among 1D-FFT outputs for range detection, we extract 1D-FFT results based solely on human target information with phase variation of respiration for each chirp; subsequently, the 1D-MUSIC algorithm is employed to obtain accurate vital Doppler results. By reducing the dimensions of the estimation algorithm from 2D to 1D, the computational burden is reduced. In order to verify the performance of the proposed algorithm, we compare the Monte Carlo simulation and root-mean-square error results. The simulation and experiment results show that the complexity of the proposed algorithm is significantly lower than that of an algorithm detecting signals in several regions.

2021 ◽  
Vol 21 (1) ◽  
pp. 23-34
Author(s):  
Sangdong Kim ◽  
Bongseok Kim ◽  
Youngseok Jin ◽  
Jonghun Lee

This paper proposes a super-resolution-based direction-of-arrivals (DOA) estimation with wide array distance and extrapolation for vital frequency-modulated continuous-wave (FMCW) radar. Most super-resolution algorithms employ the distance between adjacent arrays of half a wavelength, i.e., λ/2. Meanwhile, in the case of narrow field of view of FMCW radar, the resolution of the angle is maintained by increasing the spacing between the arrays even if the number of arrays decreases. In order to employ these characteristics of array spacing and resolution, the proposed algorithm confirms whether or not to use the case where the distance between the adjacent arrays is greater than λ/2. In the case of an array distance >λ/2, a super-resolution algorithm is performed to obtain the enhanced DOA resolution. Moreover, the proposed algorithm virtually generates data between antennae by using extrapolation in order to further improve the performance of the resolution. The simulation results show that the proposed algorithm achieves the results of root-mean-square error similar to conventional super-resolution algorithms while maintaining low complexity. In order to further verify the performance of the proposed estimation algorithm, we demonstrate its employment in practice: experiments in a chamber room and an indoor room were conducted.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4018
Author(s):  
Bong-seok Kim ◽  
Youngseok Jin ◽  
Jonghun Lee ◽  
Sangdong Kim

This paper proposes a high-efficiency super-resolution frequency-modulated continuous-wave (FMCW) radar algorithm based on estimation by fast Fourier transform (FFT). In FMCW radar systems, the maximum number of samples is generally determined by the maximum detectable distance. However, targets are often closer than the maximum detectable distance. In this case, even if the number of samples is reduced, the ranges of targets can be estimated without degrading the performance. Based on this property, the proposed algorithm adaptively selects the number of samples used as input to the super-resolution algorithm depends on the coarsely estimated ranges of targets using the FFT. The proposed algorithm employs the reduced samples by the estimated distance by FFT as input to the super resolution algorithm instead of the maximum number of samples set by the maximum detectable distance. By doing so, the proposed algorithm achieves the similar performance of the conventional multiple signal classification algorithm (MUSIC), which is a representative of the super resolution algorithms while the performance does not degrade. Simulation results demonstrate the feasibility and performance improvement provided by the proposed algorithm; that is, the proposed algorithm achieves average complexity reduction of 88% compared to the conventional MUSIC algorithm while achieving its similar performance. Moreover, the improvement provided by the proposed algorithm was verified in practical conditions, as evidenced by our experimental results.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Feng-Gang Yan ◽  
Shuai Liu ◽  
Jun Wang ◽  
Ming Jin

Most popular techniques for super-resolution direction of arrival (DOA) estimation rely on an eigen-decomposition (EVD) or a singular value decomposition (SVD) computation to determine the signal/noise subspace, which is computationally expensive for real-time applications. A two-step root multiple signal classification (TS-root-MUSIC) algorithm is proposed to avoid the complex EVD/SVD computation using a uniform linear array (ULA) based on a mild assumption that the number of signals is less than half that of sensors. The ULA is divided into two subarrays, and three noise-free cross-correlation matrices are constructed using data collected by the two subarrays. A low-complexity linear operation is derived to obtain a rough noise subspace for a first-step DOA estimate. The performance is further enhanced in the second step by using the first-step result to renew the previous estimated noise subspace with a slightly increased complexity. The new technique can provide close root mean square error (RMSE) performance to root-MUSIC with reduced computational burden, which are verified by numerical simulations.


Author(s):  
I. L. Nagornykh ◽  
N. D. Bazhenov

The paper focuses on radar operation and the results of its simulation. The probing signal of the radar is a set of 16 orthogonal carriers. To determine the range in such radar, the MUSIC algorithm was applied, which relates to super - resolution methods. Findings of research show that the MUSIC algorithm makes it possible to increase the radar range resolution in the signal - to-noise 0-20 dB ratio by 4-8 times as compared with the traditional method based on the Fourier transform. The developed models were experimentally verified


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4295 ◽  
Author(s):  
Bong-seok Kim ◽  
Youngseok Jin ◽  
Jonghun Lee ◽  
Sangdong Kim

This paper proposes a low complexity multiple-signal-classifier (MUSIC)-based direction-of-arrival (DOA) detection algorithm for frequency-modulated continuous-wave (FMCW) vital radars. In order to reduce redundant complexity, the proposed algorithm employs characteristics of distance between adjacent arrays having trade-offs between field of view (FOV) and resolution performance. First, the proposed algorithm performs coarse DOA estimation using fast Fourier transform. On the basis of the coarse DOA estimation, the number of channels as input of the MUSIC algorithm are selected. If the estimated DOA is smaller than 30°, it implies that there is an FOV margin. Therefore, the proposed algorithm employs only half of the channels, that is, it is the same as doubling the spacing between arrays. By doing so, the proposed algorithm achieves more than 40% complexity reduction compared to the conventional MUSIC algorithm while achieving similar performance. By experiments, it is shown that the proposed algorithm despite the low complexity is enable to distinguish the adjacent DOA in a practical environment.


2011 ◽  
Vol 135-136 ◽  
pp. 886-892
Author(s):  
Wen Hui Chen ◽  
Xin Xi Meng ◽  
Xiao Min Liu

In order to process and analyze the signal of frequency modulated continuous wave (FMCW) radar, a radar semi-physical simulation(RSPS) system based on STM32F103VE6 chip is designed in this paper. By designing the hardware and software of system, the RSPS system can process the radar signal, detect the target, verify the data process algorithm and display the result on TFT-LCD screen. In addition, the collected data can be uploaded to PC by RS-232 interfaces which improves the reliability, stability and practicability of system. The waveform and spectrum maps are utilized to show the feasibility of RSPS system in analysing FMCW radar signal. Experimental results show that this system has many advantages, such as multifunction, low power consumption and low cost.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2758
Author(s):  
Hyunmin Jeong ◽  
Sangkil Kim

This paper presents an educational low-cost C-band frequency-modulated continuous wave (FMCW) radar system for use in indoor through-wall metal detection. Indoor remote-sensing applications, such as through-wall detection and positioning, are essential for the comprehensive realization of the internet of things or super-connected societies. The proposed system comprises a two-stage radio-frequency power amplifier, a voltage-controlled oscillator, circuits for frequency modulation and system synchronization, a mixer, a 3-dB power divider, a low-noise amplifier, and two cylindrical horn antennas (Tx/Rx antennas). The antenna yields gain values in the 6.8~7.8 range when operating in the 5.83~5.94 GHz frequency band. The backscattered Tx signal is sampled at 4.5 kHz using the Arduino UNO analog-to-digital converter. Thereafter, the sampled signal is transferred to the MATLAB platform and analyzed using a customized FMCW radar algorithm. The proposed system is built using commercial off-the-shelf components, and it can detect targets within a 56.3 m radius in indoor environments. In this study, the system could successfully detect targets through a 4 cm-thick ply board with a measurement accuracy of less than 10 cm.


2021 ◽  
Vol 21 (5) ◽  
pp. 399-405
Author(s):  
Yongchul Jung ◽  
Seunghyeok Lee ◽  
Seongjoo Lee ◽  
Yunho Jung

A pre-processing technique is proposed to reduce the complexity of two-dimensional multiple signal classification (2D-MUSIC) for the joint range and angle estimation of frequency-modulated continuous-wave (FMCW) radar systems. By using the central symmetry of the angle steering vector from a uniform linear array (ULA) antenna and the linearity of the beat signal in the FMCW radar, this preprocessing technique transforms 2D-MUSIC from complex values into real values. To compare the computational complexity of the proposed algorithm with the conventional 2D-MUSIC, we measured the CPU processing time for various numbers of snapshots, and the evaluation results indicated that the 2D-MUSIC with the proposed pre-processing technique is approximately three times faster than the conventional 2D-MUSIC.


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3351 ◽  
Author(s):  
Andreas Och ◽  
Jochen O. Schrattenecker ◽  
Stefan Schuster ◽  
Patrick A. Hölzl ◽  
Philipp F. Freidl ◽  
...  

A primary concern in a multitude of industrial processes is the precise monitoring of gaseous substances to ensure proper operating conditions. However, many traditional technologies are not suitable for operation under harsh environmental conditions. Radar-based time-of-flight permittivity measurements have been proposed as alternative but suffer from high cost and limited accuracy in highly cluttered industrial plants. This paper examines the performance limits of low-cost frequency-modulated continuous-wave (FMCW) radar sensors for permittivity measurements. First, the accuracy limits are investigated theoretically and the Cramér-Rao lower bounds for time-of-flight based permittivity and concentration measurements are derived. In addition, Monte-Carlo simulations are carried out to validate the analytical solutions. The capabilities of the measurement concept are then demonstrated with different binary gas mixtures of Helium and Carbon Dioxide in air. A low-cost time-of-flight sensor based on two synchronized fully-integrated millimeter-wave (MMW) radar transceivers is developed and evaluated. A method to compensate systematic deviations caused by the measurement setup is proposed and implemented. The theoretical discussion underlines the necessity of exploiting the information contained in the signal phase to achieve the desired accuracy. Results of various permittivity and gas concentration measurements are in good accordance to reference sensors and measurements with a commercial vector network analyzer (VNA). In conclusion, the proposed radar-based low-cost sensor solution shows promising performance for the intended use in demanding industrial applications.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4172 ◽  
Author(s):  
Angelo Coluccia ◽  
Gianluca Parisi ◽  
Alessio Fascista

Thanks to recent technological advances, a new generation of low-cost, small, unmanned aerial vehicles (UAVs) is available. Small UAVs, often called drones, are enabling unprecedented applications but, at the same time, new threats are arising linked to their possible misuse (e.g., drug smuggling, terrorist attacks, espionage). In this paper, the main challenges related to the problem of drone identification are discussed, which include detection, possible verification, and classification. An overview of the most relevant technologies is provided, which in modern surveillance systems are composed into a network of spatially-distributed sensors to ensure full coverage of the monitored area. More specifically, the main focus is on the frequency modulated continuous wave (FMCW) radar sensor, which is a key technology also due to its low cost and capability to work at relatively long distances, as well as strong robustness to illumination and weather conditions. This paper provides a review of the existing literature on the most promising approaches adopted in the different phases of the identification process, i.e., detection of the possible presence of drones, target verification, and classification.


Sign in / Sign up

Export Citation Format

Share Document