MicroRNAs in colorectal cancer potential biomarkers and therapeutic targets

10.2741/4361 ◽  
2015 ◽  
Vol 20 (7) ◽  
pp. 1092-1103 ◽  
Author(s):  
Ai-Wu Mao
2021 ◽  
Vol 12 ◽  
Author(s):  
Hongzhen Wang ◽  
Yao Chen ◽  
Dawei Yang ◽  
Liang Ma

Although many important roles are played by human condesins in condensation and segregation of mitotic chromosomes, what roles of human condensins play in colorectal cancer are still unclear at present. Recently, abnormal expressions of all eight subunits of human condensins have been found in colorectal cancer and they are expected to become potential biomarkers and therapeutic targets for colorectal cancer in the future. However, there are still no reviews on the significance of abnormal expression of human condensin subunits and colorectal cancer until now. Based on a brief introduction to the discovery and composition of human condensins, the review summarized all abnormally expressed human subunits found in colorectal cancer based on publicly published papers. Moreover, Perspective of application on abnormally expressed human subunits in colorectal cancer is further reviewed.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wen Yin ◽  
Hecheng Zhu ◽  
Jun Tan ◽  
Zhaoqi Xin ◽  
Quanwei Zhou ◽  
...  

Abstract Background Gliomas account for the majority of fatal primary brain tumors, and there is much room for research in the underlying pathogenesis, the multistep progression of glioma, and how to improve survival. In our study, we aimed to identify potential biomarkers or therapeutic targets of glioma and study the mechanism underlying the tumor progression. Methods We downloaded the microarray datasets (GSE43378 and GSE7696) from the Gene Expression Omnibus (GEO) database. Then, we used weighted gene co-expression network analysis (WGCNA) to screen potential biomarkers or therapeutic targets related to the tumor progression. ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumors using Expression data) algorithm and TIMER (Tumor Immune Estimation Resource) database were used to analyze the correlation between the selected genes and the tumor microenvironment. Real-time reverse transcription polymerase chain reaction was used to measure the selected gene. Transwell and wound healing assays were used to measure the cell migration and invasion capacity. Western blotting was used to test the expression of epithelial-mesenchymal transition (EMT) related markers. Results We identified specific module genes that were positively correlated with the WHO grade but negatively correlated with OS of glioma. Importantly, we identified that 6 collagen genes (COL1A1, COL1A2, COL3A1, COL4A1, COL4A2, and COL5A2) could regulate the immunosuppressive microenvironment of glioma. Moreover, we found that these collagen genes were significantly involved in the EMT process of glioma. Finally, taking COL3A1 as a further research object, the results showed that knockdown of COL3A1 significantly inhibited the migration, invasion, and EMT process of SHG44 and A172 cells. Conclusions In summary, our study demonstrated that collagen genes play an important role in regulating the immunosuppressive microenvironment and EMT process of glioma and could serve as potential therapeutic targets for glioma management.


2021 ◽  
Vol 151 ◽  
pp. 104747
Author(s):  
Shili Liu ◽  
Jianjian Dai ◽  
Xiang Lan ◽  
Bingbing Fan ◽  
Tianyi Dong ◽  
...  

2015 ◽  
Vol 14 (9) ◽  
pp. 2316-2330 ◽  
Author(s):  
Matthew D. Dun ◽  
Robert J. Chalkley ◽  
Sam Faulkner ◽  
Sheridan Keene ◽  
Kelly A. Avery-Kiejda ◽  
...  

2018 ◽  
Vol 9 ◽  
Author(s):  
Paul A. Insel ◽  
Krishna Sriram ◽  
Shu Z. Wiley ◽  
Andrea Wilderman ◽  
Trishna Katakia ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 983 ◽  
Author(s):  
Otília Menyhart ◽  
Tatsuhiko Kakisaka ◽  
Lőrinc Sándor Pongor ◽  
Hiroyuki Uetake ◽  
Ajay Goel ◽  
...  

Background: Numerous driver mutations have been identified in colorectal cancer (CRC), but their relevance to the development of targeted therapies remains elusive. The secondary effects of pathogenic driver mutations on downstream signaling pathways offer a potential approach for the identification of therapeutic targets. We aimed to identify differentially expressed genes as potential drug targets linked to driver mutations. Methods: Somatic mutations and the gene expression data of 582 CRC patients were utilized, incorporating the mutational status of 39,916 and the expression levels of 20,500 genes. To uncover candidate targets, the expression levels of various genes in wild-type and mutant cases for the most frequent disruptive mutations were compared with a Mann–Whitney test. A survival analysis was performed in 2100 patients with transcriptomic gene expression data. Up-regulated genes associated with worse survival were filtered for potentially actionable targets. The most significant hits were validated in an independent set of 171 CRC patients. Results: Altogether, 426 disruptive mutation-associated upregulated genes were identified. Among these, 95 were linked to worse recurrence-free survival (RFS). Based on the druggability filter, 37 potentially actionable targets were revealed. We selected seven genes and validated their expression in 171 patient specimens. The best independently validated combinations were DUSP4 (p = 2.6 × 10−12) in ACVR2A mutated (7.7%) patients; BMP4 (p = 1.6 × 10−04) in SOX9 mutated (8.1%) patients; TRIB2 (p = 1.35 × 10−14) in ACVR2A mutated patients; VSIG4 (p = 2.6 × 10−05) in ANK3 mutated (7.6%) patients, and DUSP4 (p = 7.1 × 10−04) in AMER1 mutated (8.2%) patients. Conclusions: The results uncovered potentially druggable genes in colorectal cancer. The identified mutations could enable future patient stratification for targeted therapy.


2015 ◽  
pp. 1691 ◽  
Author(s):  
Jing Yuan Fang ◽  
XiaoQing Tian ◽  
DanFeng Sun ◽  
ShuLiang Zhao ◽  
Hua Xiong

Sign in / Sign up

Export Citation Format

Share Document