Isolation and identification of novel geosmin-degrading bacteria

10.2741/e290 ◽  
2011 ◽  
Vol E3 (3) ◽  
pp. 830-833
Author(s):  
Kazuya Shimizu
2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Expedito K. A. Camboim ◽  
Arthur P. Almeida ◽  
Michelle Z. Tadra-Sfeir ◽  
Felício G. Junior ◽  
Paulo P. Andrade ◽  
...  

The objective of this paper was to report the isolation of two fluoroacetate degrading bacteria from the rumen of goats. The animals were adult goats, males, crossbred, with rumen fistula, fed with hay, and native pasture. The rumen fluid was obtained through the rumen fistula and immediately was inoculated 100 μL in mineral medium added with 20 mmol L−1sodium fluoroacetate (SF), incubated at 39°C in an orbital shaker.Pseudomonas fluorescens(strain DSM 8341) was used as positive control for fluoroacetate dehalogenase activity. Two isolates were identified by 16S rRNA gene sequencing asPigmentiphaga kullae(ECPB08) andAncylobacter dichloromethanicus(ECPB09). These bacteria degraded sodium fluoroacetate, releasing 20 mmol L−1of fluoride ion after 32 hours of incubation in Brunner medium containing 20 mmol L−1of SF. There are no previous reports of fluoroacetate dehalogenase activity forP. kullaeandA. dichloromethanicus. Control measures to prevent plant intoxication, including use of fences, herbicides, or other methods of eliminating poisonous plants, have been unsuccessful to avoid poisoning by fluoroacetate containing plants in Brazil. In this way,P. kullaeandA. dichloromethanicusmay be used to colonize the rumen of susceptible animals to avoid intoxication by fluoroacetate containing plants.


2015 ◽  
Vol 77 (24) ◽  
Author(s):  
Najwa Husna Sanusi ◽  
Phang Ing Chia ◽  
Noor Faizul Hadry Nordin

Contamination of soil and groundwater pollution is a severe problem, has been attracting considerable public attention over the last decades. With the demand for green and cleaner technology for remediation process, there is an increased interest in moving away from conventional technologies towards bioremediation technologies. Rhizospheric zone is a suitable place for harboring bacteria that are capable to utilize chemical compounds which will be used either to facilitate growth of bacteria or the host plants. Identification of the specific microbial members should allow for better strategies to enhance biodegradation. This study aimed to isolate and identify the rhizospheric associated microbes of lemongrass (Cymbopogon citratus), a plant that commonly available in South East Asia, which could be used in future research on degradation studies of dibenzofuran. This probably is due to their ability to harbor large numbers of bacteria on their highly branched root systems. A total of 68 strains of dibenzofuran (DF)- degrading bacteria isolated from the rhizospheric soil of lemon grass from 2 different unpolluted sites were characterized. The isolates showed the ability to utilize dibenzofuran as the sole carbon and energy source up to 40 ppm. Identification of the isolates based on 16S rRNA gene sequence assigned them as members of the phyla Proteobacteria and Firmicutes, among which those of the genera, Proteobacteria were most abundant. The presented results indicated the potential of these bacterial isolates in bioremediation of dibenzofuran-contaminated soil.


2019 ◽  
Vol 4 (1) ◽  
pp. 79-88
Author(s):  
Evi Octaviany ◽  
Suharjono Suharjono ◽  
Irfan Mustafa

A commercial saponin as biosurfactant can reduce the surface tension of water and increase of hydrocarbon degradation. However, this saponin can be toxic to some hydrocarbonoclastic bac-teria. This study aimed to obtain bacterial isolates that were tolerant and incapable to degrade saponin, and to identify them based on 16S rDNA sequence. Bacteria were isolated from petroleum contaminated soil in Wonocolo Village, Bojonegoro Regency, East Java, Indonesia. The soil samples were acclimated using Bushnell-Haas (BH) broth with 0.5% crude oil at room temperature for 3 weeks. The culture was spread onto BH agar incubated at 30°C for 7 days. The first screened, isolates were grown in nutrient broth with addition of sap-onin 0%, 8%, and 12% (v/v) then incubated at 30°C for three days. The bacterial cell density was measured using a spectrophotometer. Second screened, the isolates were grown on BH broth with addition of 0.5% saponin as a sole carbon source, and their cell densities were measured. The selected isolates were identified based on 16S rDNA sequences. Among 34 bacterial isolates, nine isolates were tol-erant to 12% saponin. Three bacterial isolates IHT1.3, IHT1.5, and IHT3.24 tolerant to high concentration of saponin and did not use this substance as growth nutrition. The IHT1.3, IHT1.5, and IHT3.24 isolates were identified as Ochrobactrum pseudogrignonense (99% similarity), Pseudomonas mendocina (99%), and Ochrobactrum pi-tuitosum; (97%), respectively. Those three selected isolates are good candidates as hydrocarbon-degrading bacteria to bioremediation of soil contaminated crude oil. However, the combined activity of bacteria and saponin to degrade hydrocarbon needs further study. 


2009 ◽  
Vol 75 (21) ◽  
pp. 6924-6928 ◽  
Author(s):  
Pathmalal M. Manage ◽  
Christine Edwards ◽  
Brajesh K. Singh ◽  
Linda A. Lawton

ABSTRACT Of 31 freshwater bacterial isolates screened using the Biolog MT2 assay to determine their metabolism of the microcystin LR, 10 were positive. Phylogenetic analysis (16S rRNA) identified them as Arthrobacter spp., Brevibacterium sp., and Rhodococcus sp. This is the first report of microcystin degraders that do not belong to the Proteobacteria.


2019 ◽  
Vol 147 ◽  
pp. 125-134
Author(s):  
Mehdi Hassanshahian ◽  
Moslem Abarian ◽  
Kiana Bahramzadeh ◽  
Maria Genovese

Sign in / Sign up

Export Citation Format

Share Document