scholarly journals Isolation and Identification of Sodium Fluoroacetate Degrading Bacteria from Caprine Rumen in Brazil

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Expedito K. A. Camboim ◽  
Arthur P. Almeida ◽  
Michelle Z. Tadra-Sfeir ◽  
Felício G. Junior ◽  
Paulo P. Andrade ◽  
...  

The objective of this paper was to report the isolation of two fluoroacetate degrading bacteria from the rumen of goats. The animals were adult goats, males, crossbred, with rumen fistula, fed with hay, and native pasture. The rumen fluid was obtained through the rumen fistula and immediately was inoculated 100 μL in mineral medium added with 20 mmol L−1sodium fluoroacetate (SF), incubated at 39°C in an orbital shaker.Pseudomonas fluorescens(strain DSM 8341) was used as positive control for fluoroacetate dehalogenase activity. Two isolates were identified by 16S rRNA gene sequencing asPigmentiphaga kullae(ECPB08) andAncylobacter dichloromethanicus(ECPB09). These bacteria degraded sodium fluoroacetate, releasing 20 mmol L−1of fluoride ion after 32 hours of incubation in Brunner medium containing 20 mmol L−1of SF. There are no previous reports of fluoroacetate dehalogenase activity forP. kullaeandA. dichloromethanicus. Control measures to prevent plant intoxication, including use of fences, herbicides, or other methods of eliminating poisonous plants, have been unsuccessful to avoid poisoning by fluoroacetate containing plants in Brazil. In this way,P. kullaeandA. dichloromethanicusmay be used to colonize the rumen of susceptible animals to avoid intoxication by fluoroacetate containing plants.

Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1519
Author(s):  
Meinan Chang ◽  
Fengtao Ma ◽  
Jingya Wei ◽  
Junhao Liu ◽  
Xuemei Nan ◽  
...  

Previous studies have shown that Bacillus subtilis natto affects rumen fermentation and rumen microbial community structure, which are limited to detect a few microbial abundances using traditional methods. However, the regulation of B. subtilis natto on rumen microorganisms and the mechanisms of microbiota that affect rumen fermentation is still unclear. This study explored the effects of live and autoclaved B. subtilis natto on ruminal microbial composition and diversity in vitro using 16S rRNA gene sequencing and the underlying mechanisms. Rumen fluid was collected, allocated to thirty-six bottles, and divided into three treatments: CTR, blank control group without B. subtilis natto; LBS, CTR with 109 cfu of live B. subtilis natto; and ABS, CTR with 109 cfu of autoclaved B. subtilis natto. The rumen fluid was collected after 0, 6, 12, and 24 h of fermentation, and pH, ammonia nitrogen (NH3-N), microbial protein (MCP), and volatile fatty acids (VFAs) were determined. The diversity and composition of rumen microbiota were assessed by 16S rRNA gene sequencing. The results revealed LBS affected the concentrations of NH3-N, MCP, and VFAs (p < 0.05), especially after 12 h, which might be attributed to changes in 18 genera. Whereas ABS only enhanced pH and NH3-N concentration compared with the CTR group (p < 0.05), which might be associated with changes in six genera. Supplementation with live B. subtilis natto improved ruminal NH3-N and propionate concentrations, indicating that live bacteria were better than autoclaved ones. This study advances our understanding of B. subtilis natto in promoting ruminal fermentation, providing a new perspective for the precise utilization of B. subtilis natto in dairy rations.


2021 ◽  
Author(s):  
Kaihe Xiang ◽  
Xiaoyu Hu ◽  
Ruiying Mu ◽  
Shuang Li ◽  
Ying Wang ◽  
...  

Abstract Backgroud: Mastitis is the most serious disease endangering animal husbandry, especially dairy farming. Clinical investigations indicated that cows suffering from ketosis have a higher probability of mastitis. Rumen microbiota is closely related to ruminant health. However, it is not clear what role it plays in this process.Results: The microbiota in rumen fluid and milk from ketosis cows were determined by 16S rRNA gene sequencing. The results showed that the richness of bacterial community both in rumen and milk were changed in ketosis cows. The abundance of genus Prevotella, Ruminococcus, Succinivibrionaceae_UCG-001 and Streptococcus in rumen fluid from ketosis cows decreased significantly and were negatively correlated with blood BHBA and milk SCC. In contrast, the abundance of genus Luteimonas, Thermomonas, Christensenellaceae_R-7_group, Rikenellaceae_RC9_gut_group, NK4A214_group, Paracoccus, Acetitomaculum, Prevotellaceae_UCG-003, Deinococcus, Saccharofermentans and Butyrivibrio in rumen fluid from ketosis cows increased significantly and were positively correlated with blood BHBA and milk SCC. In addition, the abundance of F082 and Thermomonas were increased, while the abundance of genus Acinetobacter and UCG-005 were reduced both in milk and rumen fluid in ketosis cows than healthy cows. Conclusions: Ketosis in dairy cows is capable of inducing mastitis. The rumen microbiota of ketotic cows changed significantly and is associated with the development of mastitis. Targeting rumen microbiota regulation may be a promising strategy to prevent metabolism disorder and its secondary diseases in dairy cows.


2017 ◽  
Vol 2017 (1) ◽  
pp. 2256-2267
Author(s):  
Ruta Suresh Deshpande ◽  
Devi Sundaravadivelu ◽  
Pablo Campo ◽  
Jorge W. SantoDomingo ◽  
Robyn N. Conmy

Abstract 2017-271 In recent years, diluted bitumen (or dilbit) has become an important source of hydrocarbon-based fuel. While information on the degradation of crude oils has been well researched, dilbit degradation has been studied at a much lesser extent. The objective of this study was to compare biodegradation of dilbit with a conventional crude oil (CCO) under various conditions. Two different microcosm experiments were set up, one containing a mixed culture acclimated to dilbit (Kalamazoo River Enrichment, KRC) and the other having a mixed culture enriched on soil contaminated with hydrocarbons (Anderson Ferry Enrichment, AFC). The microcosms were run for 60 d at 25 °C and for 72 days at 5 °C in flasks containing sterile Bushnell Hass broth and naturally dispersed oil. Each flask was inoculated with the KRC and AFC mixed cultures, and rotated on an orbital shaker (200 rpm) at the above stated temperatures. On each sampling day, triplicates were sacrificed to determine the residual hydrocarbon concentration. Additionally, some samples were used to determine the bacterial composition using 16S rRNA gene sequencing analysis. Hydrocarbon analysis (alkanes and PAHs) was performed by gas chromatography/mass spectrometry (GC/MS/MS). Higher degradation rates were achieved at 25 °C as compared to 5 °C. All the enrichments metabolized CCO as well dilbit, but the nature and extent of the degradation was distinct. KRC meso culture was the most effective among all, as it completely removed alkanes and most of the PAHs. AFC enrichment performed differently at the two temperatures; an acclimation period (8 d) was observed at 5 °C while there was no lag at 25 °C. KRC cryo culture as well as AFC culture at both temperatures degraded alkanes completely while they were not able to metabolize heavier fractions of the oil (C2–4 homologues of 3- and 4-ring compounds). All cultures showed the presence of diverse oil degrading bacteria and the differences in their compositions affected the biodegradation. Although dilbit was biodegraded, for all the treatments except AFC at 5 °C, the rate of degradation and the extent of degradation was greater for CCO owing to the higher concentrations of lighter hydrocarbons.


2022 ◽  
Vol 82 ◽  
Author(s):  
S. Ullah ◽  
N. Ali ◽  
F. U. Dawar ◽  
M. Nughman ◽  
M. Rauf ◽  
...  

Abstract In this study, oil degrading bacteria discovered from fish living near the oil ports at Karachi in Pakistan were characterized. The bacteria isolated from skin, gills, and gut in fish could consume crude oil as a source of carbon and energy. Total 36 isolates were tested using Nutrient Agar (NA) and MSA media with different crude oil concentrations (0.2%, 0.5%, 0.7%, 1%, 2%, and 5%) and 4 out of 36 isolates (two Gram positive and two Gram negative bacteria) were selected for further identification. 16S rRNA gene sequencing revealed that the isolates are related to Bacillus velezensis, Bacillus flexus, Pseudomonas brenneri and Pseudomonas azotoforman. Oil degrading potential of these bacteria was characterized by GC-MS analysis of degradation of oil components in crude oil as well as engine oil. We found that one (2, 6, 10, 14-Tetramethylpentadecane) out of 42 components in the crude oil was fully eliminated and the other oil components were reduced. In addition, 26 out of 42 oil components in the engine oil, were fully eliminated and the rest were amended. Taken together, these studies identify that B. velezensis, B. flexus, P. brenneri and P. azotoforman have high oil degrading potential, which may be useful for degradation of oil pollutants and other commercial applications.


2020 ◽  
Vol 8 (12) ◽  
pp. 2005
Author(s):  
Venkata Vinay Kumar Bandarupalli ◽  
Benoit St-Pierre

The inclusion of starch-rich feedstuffs, a common practice in intensive ruminant livestock production systems, can result in ruminal acidosis, a condition that can severely impact animal performance and health. One of the main causes of acidosis is the rapid accumulation of ruminal short chain fatty acids (SCFAs) resulting from the microbial digestion of starch. A greater understanding of ruminal bacterial amylolytic activities is therefore critical to improving mitigation of acidosis. To this end, our manuscript reports the identification of a candidate starch utilizer (OTU SD_Bt-00010) using batch culturing of bovine rumen fluid supplemented with starch. Based on 16S rRNA gene sequencing and metagenomics analysis, SD_Bt-00010 is predicted to be a currently uncharacterized strain of Prevotella albensis. Annotation of de novo assembled contigs from metagenomic data not only identified sequences encoding for α-amylase enzymes, but also revealed the potential to metabolize xylan as an alternative substrate. Metagenomics also predicted that SCFA end products for SD_Bt-00010 would be acetate and formate, and further suggested that this candidate strain may be a lactate utilizer. Together, these results indicate that SD_Bt-00010 is an amylolytic symbiont with beneficial attributes for its ruminant host.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hongliang Chen ◽  
Matteo Mozzicafreddo ◽  
Elisa Pierella ◽  
Vanessa Carletti ◽  
Angela Piersanti ◽  
...  

Abstract Background Soil-transmitted helminthiases are important neglected tropical diseases that result in a notably high number of disability-adjusted life years worldwide. Characterizing the interactions between the human intestinal microbiome and helminths is of interest in the development of alternative treatments that do not rely on chemotherapeutics and do not lead to drug resistance. Methods We recruited and obtained fecal samples from 32 pairs of mothers and children on Pemba Island and monitored their intestinal microbiota using 16S rRNA gene sequencing. Results We observed that microbial changes occur in the gut microbiota of infected mothers and children. Some short-chain fatty acid (SCFA)-producing bacteria and carbohydrate-degrading bacteria exhibited lower abundance in the infected individuals. Potentially pathogenic Campylobacter and proinflammatory Methanobrevibacter in infected mothers and opportunistic Enterococcus in infected children exhibited greater abundance. Conclusions Our findings could reveal the microbiota profiling in T. trichiura-infected individuals, indicate the potential roles of key microbiota in the host and aid to the development of novel strategies to control T. trichiura infection. Graphic abstract


1970 ◽  
Vol 5 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Rajesh C Patil ◽  
Madhav V Upadhye ◽  
Varsha D Kolatkar ◽  
VI Katchi ◽  
GJ Kulkarni ◽  
...  

Bacteria belonging to Aeromonas spp. have long been known to cause infections in a variety of animals. Two unique strains were isolated from the diseased blue gourami ornamental aquarium fish and from the aquarium water that housed the fish. Characterization of these two isolates was carried out by using standard biochemical, morphological, and 16S rRNA gene sequencing studies. The results obtained indicated that both the strains belong to Aeromonas spp. BLAST analysis indicated an identity value of 99%. The sequences were deposited in the DNA Database of Japan (DDBJ). Experimental infection with these isolated strains indicated low mortality, suggesting that these strains were opportunistic in nature. Antimicrobial susceptibility assay indicated that both the strains were sensitive to nitrofurantoin, enrofloxacin, and furazolidone, and significantly resistant to erythromycin, oxytetracycline, and tetracycline.DOI: http://dx.doi.org/10.3126/ijls.v5i1.5952 International Journal of Life Sciences Vol.5(1) 2011 25-31


Sign in / Sign up

Export Citation Format

Share Document