Large Bridges Recently Built in Poland

Author(s):  
Robert Toczkiewicz ◽  
Jan Biliszczuk ◽  
Marco Teichgraeber

<p>The road and railway infrastructure in Poland has been intensively developed and modernized for the last years. Around 300 new bridges are built annually. Among the new structures there is a group of modern long span bridges.</p> <p>This paper presents examples of selected, most interesting large road bridges built in recent years in Poland. The following structures are described:</p><ul><li> <p>two largest extradosed bridges in Europe – with spans exceeding 200 m;</p></li><li> <p>the largest arch bridge in Poland with 270 m long fixed arches and an expressway bridge with 200 m long arch span;</p></li><li> <p>two cable-stayed bridges.</p> <p>Structural configuration and construction technology of the above mentioned bridges are described.</p>

2012 ◽  
Vol 446-449 ◽  
pp. 1158-1166 ◽  
Author(s):  
Hong Jiang Li

Different from traditional strengthening methods, the technology on replacement of structural members is a new strengthening concept for solving the problem of local failures in prestressed concrete cable-stayed bridges. To clarify the characteristics and realization ways of this technology, practical experience and latest achievements of strengthening prestressed concrete cable-stayed bridges in recent years in China were summarized comprehensively, such as replacement of stay cables, replacement of closure segment, replacement of tension rocker bearing cables at subsidiary piers, et al. Forms of Special diseases were described, and their failure mechanisms were given. Then calculation methods and key techniques of these strengthening ways were introduced. Engineering application and practice showed, the technology on replacement of structural members is a system engineering, namely, not only new structural members should meet the mechanical requirements of their own, but also the structural condition of whole bridge should be improved through replacing structural members. Establishment and development of this technology had important and far-reaching significance to promote the technical level of strengthening long-span bridges under the condition of special diseases and ensure bridges in the sate of safe and sustainable operation.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Seunghoo Jeong ◽  
Young-Joo Lee ◽  
Sung-Han Sim

As the construction of long-span bridges such as cable-stayed bridges increases worldwide, maintaining bridge serviceability and operability has become an important issue in civil engineering. The stay cable is a principal component of cable-stayed bridges and is generally lightly damped and intrinsically vulnerable to vibration. Excessive vibrations in stay cables can potentially cause long-term fatigue accumulation and serviceability issues. Previous studies have mainly focused on the mitigation of cable vibration within an acceptable operational level, while little attention has been paid to the quantitative assessment of serviceability enhancement provided by vibration control. This study accordingly proposed and evaluated a serviceability assessment method for stay cables equipped with vibration control. Cable serviceability failure was defined according to the range of acceptable cable responses provided in most bridge design codes. The cable serviceability failure probability was then determined by means of the first-passage problem using VanMarcke’s approximation. The proposed approach effectively allows the probability of serviceability failure to be calculated depending on the properties of any installed vibration control method. To demonstrate the proposed method, the stay cables of the Second Jindo Bridge in South Korea were evaluated and the analysis results accurately reflected cable behavior during a known wind event and show that the appropriate selection of vibration control method and properties can effectively reduce the probability of serviceability failure.


2014 ◽  
Vol 587-589 ◽  
pp. 1586-1592 ◽  
Author(s):  
Wei Lu ◽  
Ding Zhou ◽  
Zhi Chen

A long-span cable-stayed arch bridge is a new form of bridge structure that combines features of cable-stayed bridges with characteristics of arch bridges. In the present study, we derived a practical calculation method for the lateral destabilization critical loading of cable-stayed arch bridges during the construction process based the energy principle. The validity of the method was verified with an example. The calculation method provides a quick and efficient way to evaluate the lateral stability of a cable-stayed arch bridge and a concrete filled steel tubular arch bridge during the construction process.


2014 ◽  
Vol 501-504 ◽  
pp. 1125-1128
Author(s):  
Liang Liang Zhai

For long-span cable-stayed bridge, the stress of pylon anchorage zone is complex. For the construction technology personnel, the research on the force characteristics of anchorage zone can offer a theoretical base to organize construction better. This paper makes a further study for the stress of tower anchorage zone of two cable-stayed bridges with different anchor forms by using major general finite element program ANSYS to analysis the force characteristics of anchorage zone in detail. The results provide a reference for construct and design the same type structure. The analysis method for same type structure is also worth learning.


Author(s):  
Juan A. Sobrino

<p>Sustainability design considerations play a relevant role in long span bridges. In addition to the social and economic benefits to communities, a good design must be respectfully integrated into the environment and implement other sustainability strategies: prioritizing the use of local materials and labour, and design for durability to extend its lifetime. Minimization of the amount of materials, even with solutions that require more labour, is also an unrecognized strategy to reduce the carbon print.</p><p>The paper presents the sustainability strategies utilized in the design of two cable-stayed bridges recently completed in Colombia: The Hisgaura Bridge and the Magdalena River crossing at Honda. The design of both bridges has been driven by a combination of various factors, all aligned with sustainability practices, such as minimum impact on the natural environment, use of light-weight structures to minimize consumption of materials, use of local materials and labor, along with constructability and cost considerations.</p><p>The Hisgaura bridge is a concrete cable-stayed structure with a main span of 330 m and 148 m tall pylons that is one of the tallest bridges in Latin-America. The Honda bridge is a similar structure with a main span of 247 m over the longest river in Colombia.</p>


2012 ◽  
Vol 188 ◽  
pp. 162-167 ◽  
Author(s):  
Chang Rong Yao ◽  
Ya Dong Li

The health monitoring for long-span bridges has become a hotspot in civil engineering. However, because of the complexity and particularity in bridge structure, monitoring variables are greatly influenced by environmental factors, which results in more difficulties in evaluation. The paper analyzes structural responses in different temperature fields, and the results show that effect of temperature difference among members and temperature gradient are remarkable on structures. The results may be of reference for formulation of bridge health monitoring strategies.


2011 ◽  
Vol 255-260 ◽  
pp. 896-900
Author(s):  
Xiao Fei Liang ◽  
Yue Xu ◽  
Hong Jing Du

Based on the hoisting construction feature of large hinge-support tower and field circumstance, the cable hoisting system for Meng-dong river grand bridge at the west of Hunan province is designed. Studying on cable hoisting system design and construction of the CFST arch bridge, the paper takes systematic analysis and calculations on the key construction technology of the CFST arch bridge, and puts it in practice successfully which provides experience for the similar long—span bridge construction of the follow.


2012 ◽  
Vol 256-259 ◽  
pp. 1596-1600
Author(s):  
Dong Liang ◽  
Chang Rong Yao ◽  
Sai Zhi Liu

As the western region is a mountainous area with geology complicated geological conditions, the proportion of bridges and tunnels is bigger. Based on the characteristic of mountainous route and long-span bridges, this paper discussed the conceptual design of mountainous bridges. Firstly, this paper analyzes the characteristic of mountainous long-span bridges and proposed some fundamental principles to design long-span bridges. After the comparison of the main bridge structures, the paper points out that the designer should select the best programs considering hydrological, geological, geomorphology, construction technology, transportation , geographical environment and social environment. The purpose of this paper is to give reference for the conceptual design of mountainous long-span bridges.


2019 ◽  
Vol 9 (7) ◽  
pp. 1301
Author(s):  
Chunbao Xiong ◽  
Lina Yu ◽  
Yanbo Niu

Under the action of wind, traffic, and other influences, long-span bridges are prone to large deformation, resulting in instability and even destruction. To investigate the dynamic characteristics of a long-span concrete-filled steel tubular arch bridge, we chose a global navigation satellite systems-real-time kinematic (GNSS-RTK) to monitor its vibration responses under ambient excitation. A novel approach, the use of complete ensemble empirical mode decomposition with adaptive noise combined with wavelet packet (CEEMDAN-WP) is proposed in this study to increase the accuracy of the signal collected by GNSS-RTK. Fast Fourier transform (FFT) and random decrement technique (RDT) were adopted to calculate structural modal parameters. To verify the combined denoising and modal parameter identification methods proposed in this paper, we established the structural finite element model (FEM) for comparison. Through simulation and comparison, we were able to draw the following conclusions. (1) GNSS-RTK can be used to monitor the dynamic response of long-span bridges under ambient excitation; (2) the CEEMDAN-WP is an efficient method used for the noise reduction of GNSS-RTK signals; (3) after signal filtering and noise reduction, structural modal parameters are successfully derived through RDT and illustrated graphically; and (4) the first-order natural frequency identified by field measurement is slightly higher than the FEM in this work, which may have been caused by bridge damage or the inadequate accuracy of the finite element model.


2021 ◽  
Vol 293 ◽  
pp. 02004
Author(s):  
Guangjun Li ◽  
Tianfang Mo ◽  
Ningbo Xu ◽  
Weixiong Zhang ◽  
Hanwen Lu ◽  
...  

With the progress of engineering technology, the ability of design and construction has been significantly improved, which the number of long-span construction and long-span Bridges and long-span steel structures are increasing more and more. As the main supporting members of Bridges and steel structures, the quality assurance of rectangular reinforced concrete independent columns is particularly important. In the implementation process of No.18 Maintenance Hangar Project of GAMECO Aircraft Maintenance Facility Phase III in Guangzhou Baiyun International Airport of China Southern Airlines, through research and practice, our company applied the subsection construction technology of super high section rectangular concrete independent columns, which can not only guarantee the quality and forming effect of the column body, but also reduce the input of formwork materials. Improve the utilization rate of formwork and scaffold effectively, and then reduce the input of turnover materials, and achieve remarkable results.


Sign in / Sign up

Export Citation Format

Share Document