scholarly journals Structure of Masera's Septal Olfactory Organ in Cat (Felis silvestris f. catus) - Light Microscopy in Selected Stages of Ontogeny

2006 ◽  
Vol 75 (4) ◽  
pp. 471-475
Author(s):  
I. Kociánová ◽  
A. Gorošová ◽  
F. Tichý ◽  
P. Čížek ◽  
M. Machálka

The septal organ /SO/ (Masera's organ /MO/) is a chemoreceptor presently considered one of three types of olfactory organs (along with the principal olfactory region and vomeronasal organ). Notwithstanding the septal organ having been first described by Rodolfo Masera in 1943, little is known of the properties of sensory neurons or of its functional significance in chemoreception. Until now the septal organ has been described only in laboratory rodents and some marsupials. This work refers to its existence in the domestic cat (Felis silvestris f. catus). The septal organ can be identified at the end of embryonic period - 27 or 28 days of ontogenesis in cats (the 6th developmental stage of Štěrba) - coincident with formation of the principal olfactory region in nasal cavity. At 45 days of ontogenesis (the 9th developmental stage of Štěrba), this septal olfactory organ is of circular or oval shape, 120 μm in diameter, in ventral part of septum nasi, lying caudally to the opening of ductus incisivus. The structure of the epithelium of septal olfactory organ is clearly distinct from the respiratory epithelium of the nasal cavity. It varies in thickness, cellular composition, as well as free surface appearance, and even lack the typical structure of sensory epithelium, in this developmental period. Nerve bundles and glandular acini are lacking in the lamina propria mucosae of the septal organ and in the adjacent tissues. Glands appear as the single non-luminized cords of epithelia extending from the surface. The adjacent respiratory epithelium contains numerous goblet cells.

2015 ◽  
Vol 49 (6) ◽  
pp. 559-566 ◽  
Author(s):  
M. F. Kovtun ◽  
Ya. V. Stepanyuk

Abstract The Development of Olfactory Organ of Lissotriton vulgaris (Amphibia, Caudata). Kovtun, M. F, Stepanyuk, Ya. V. - Using common histological methods, the morphogenesis of olfactory analyzer peripheral part of Lissotriton vulgaris (Amphibia, Caudata) was studied, during the developmental period starting with olfactory pit laying and finishing with definitive olfactory organ formation. Special attention is paid to vomeronasal organ and vomeronasal gland development. Reasoning from obtained data, we consider that vomeronasal organ emerged as the result of olfactory epithelium and nasal cavity differentiation.


2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Noelia Vazquez 1 ◽  
Horst Erich König 2 ◽  
Hassen Jerbi 3 ◽  
William Pérez 1

Available information on the anatomy of the respiratory system of the pampas deer (Ozotoceros bezoarticus, Linnaeus 1758) is scarce, so the aim of this work was to describe the upper respiratory tract anatomy of this species. The study was performed with 10 adult animals of both sexes and the study method was simple dissection. Pampas deer had a nasolabial plane different to the small domestic ruminants. The nasal cavity had the fundamental conformation of the ruminants with simple winding of the dorsal concha and double winding of the ventral one. The vomeronasal organ communicated directly with the oral cavity by the incisive duct. The larynx was located ventrally to the first two cervical vertebrae. The total length of the larynx was 52.76 ± 7.66 mm from the epiglottis to the cricoid cartilage. The dorsoventral length was 30.32 ± 3.71 mm. It is necessary to make detailed histological examinations of the distribution of the olfactory epithelium versus non-sensory epithelium within the nasal cavity. These data are essential to understand the function of the turbinates and the nasal cavity in general. In the same way, detailed studies of the physiology of the vomeronasal organ and larynx are necessary. 


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1462
Author(s):  
Daisuke Kondoh ◽  
Yusuke Tanaka ◽  
Yusuke K. Kawai ◽  
Takayuki Mineshige ◽  
Kenichi Watanabe ◽  
...  

The vomeronasal organ (VNO) detects specific chemicals such as pheromones and kairomones. Hedgehogs (Eulipotyphla: Erinaceidae) have a well-developed accessory olfactory bulb that receives projections from the VNO, but little is known about the hedgehog VNO. Here, we studied the histological features of the VNO in five individual African pygmy hedgehogs by hematoxylin-eosin, periodic acid-Schiff, and Alcian blue stains. The hedgehog VNO comprises a hyaline cartilage capsule, soft tissue and epithelial lumen, and it branches from the site just before the incisive duct opening into the nasal cavity. The soft tissues contain several small mucous (or mucoserous) glands and a large serous gland, and many venous sinuses all around the lumen. The VNO lumen is round to oval throughout the hedgehog VNO, and the sensory epithelium lines almost the entire rostral part and medial wall of the middle part. These findings indicate that the VNO is functional and plays an important role in the hedgehog. Notably, the VNO apparently has a characteristic flushing mechanism with serous secretions like those of gustatory glands, which the hedgehog might frequently use to recognize the external environment.


1994 ◽  
Vol 72 (6) ◽  
pp. 1093-1099 ◽  
Author(s):  
Hilary N. Feldman

Carnivores use various scent-marking methods. Semi-feral domestic cats (Felis silvestris catus) were observed to use the same means as their wild counterparts. Adult males performed most urine spray marking. Cats scratched tree bark, producing a visual mark, and probably used trees both as markers and for claw sharpening. Most scratching trees were located along frequently used paths rather than along territorial boundaries or scattered randomly throughout a home range. Bark consistency affected the tree species that were scratched, with soft bark preferred. Although deposition of faeces and urine was recorded, there was no clear evidence for their use as territorial markers; cats primarily eliminated away from the core area of the home range. Most faeces were buried, although exposed deposits were also observed. Cats also rubbed against objects, probably using glandular secretions from the face and tail areas to scent mark. Males rubbed objects more than females, and males scent marked more. Individual males may use different means of scent marking. Scent marking in this study supports the idea that cats do not defend territories, instead patrolling and reinforcing marks throughout a looser home range. The suggestion has been made that different forms of marking may serve separate signalling functions.


1971 ◽  
Vol 24 (3) ◽  
pp. 765 ◽  
Author(s):  
Jean E Kratzing

The amino acid sequence of the a-chain of haemoglobin from M. giganteus has been determined. The soluble peptides formed by tryptic digestion were isolated by gel filtration, ion-exchange chromatography, paper ionophoresis, and chromatography. The amino acid sequences were determined by the "dansyl"Edman procedure. Incomplete hydrolysis of one bond resulted in a large insolublecore peptide containing 40 amino acid residues. The sequence of this peptide was deduced from the sequences of smaller peptides resulting from further digestion with thermolysin and papain. Maleylation of the a-globin before tryptic digestion gave three large fragments which assisted in assigning tryptic peptides to specific areas of the molecule. A special procedure involving maleylation of a chymotryptic digest of globin was used to isolate peptides containing arginine which provided overlap sequences of tryptic peptides


2010 ◽  
Vol 12 (1) ◽  
pp. 55-63 ◽  
Author(s):  
Emma Holder ◽  
Barbara Stevenson ◽  
Raymond Farley ◽  
Tom Hilliard ◽  
Theresa Wodehouse ◽  
...  

2014 ◽  
Vol 26 (1) ◽  
pp. 134
Author(s):  
L. N. Moro ◽  
M. I. Hiriart ◽  
J. Jarazo ◽  
C. Buemo ◽  
A. Sestelo ◽  
...  

Most of the 36 species of wild felids are at a level of threat, and interspecific SCNT (iSCNT) comes as a strategy to contribute to these species conservation. The aim of this study was to evaluate the effect of embryo aggregation in cheetah (Ch, Acinonyx jubatus), bengal (Ben, a hybrid between Felis silvestris and Prionailurus bengalensis), and domestic cat (DC, Felis silvestris) embryos generated by cloning. DC oocytes were in vitro matured and zona-free SCNT (with DC fibroblasts) or iSCNT (with Ch or Ben fibroblasts) was performed. The reconstructed embryos were activated with 5 μM ionomycin and 1.9 mM 6-DMAP, and cultured in SOF using microwells. Cloned embryos were cultured individually or as 2-embryo aggregates. The experimental groups were Ch1X, Ch2X, Ben1X, Ben2X, and the control groups were DC1X and DC2X. Embryo development was compared by Fisher's exact test (P ≤ 0.05). Embryo aggregation improved cleavage (Day 2) and blastocyst (Day 7) rates per well in all the groups (87.2% v. 96.7%, 83.8% v. 93.3% and 87.6% v. 98.2% for cleavage; and 13.7% v. 28.6%, 33.3% v. 43.8% and 27.4% v. 47.7% for blastocyst, for Ch1X (n = 102), Ch2X (n = 91), Ben1X (n = 154), Ben2X (n = 105), DC1X (n = 113), and DC2X (n = 109), respectively. Moreover, the Ch2X blastocyst rate was statistically similar as the control group DC1X. The mean total cell numbers of the blastocysts obtained were 264 ± 211 and 400.8 ± 97 for Ch1X and Ch2X, 278 ± 62 and 517 ± 104 for Ben1X and Ben2X, 385 ± 127 and 625 ± 183 for DC1X and DC2X, respectively. Although no statistical differences were obtained between the 1X and 2X groups, the 2X groups nearly doubled the average number of cells compared with the 1X groups. Blastocysts were also classified as grade 1 (expanded blastocysts with a well-defined ICM), grade 2 (expanded blastocysts without a well-defined ICM), and grade 3 (not expanded blastocysts). This classification showed an increase in grade 1 DC2X blastocyst compared with DC1X blastocysts (36.7% v. 16.1%), but no differences were observed in the other species. Expression of OCT-4 was assessed by inmunocytochemistry. The cheetah blastocysts markedly over-expressed this protein: the percentage of cells that expressed OCT-4 in Ch1X, Ch2X, Ben1X, Ben2X, DC1X, and DC2X was 88.2, 80.2, 46.3, 45.4, 51, and 47.4%, respectively, with statistical differences among all the groups except Ben1X and Ben2X. The proportion of OCT-4 expressing cells over total cell numbers was analysed by the difference of proportions test (P ≤ 0.05). In conclusion, iSCNT resulted in high rates of blastocyst formation, especially when embryo aggregation was applied. This strategy has not been previously evaluated in felids or iSCNT procedures, and has been demonstrated to improve blastocyst formation, the number of cells in the 3 groups, and the blastocyst quality in the DC. Other pluripotent genes besides OCT-4 should be studied to determine whether the overexpression of this gene in cheetah embryos is the consequence of an inefficient nuclear reprogramming that prevents a correct regulation. Finally, the iSCNT and embryo aggregation could contribute to species conservation in felids.


Animals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 647 ◽  
Author(s):  
Wells ◽  
McDowell

Cat breeds differ enormously in their behavioural disposition, a factor that can impact on the pet-owner relationship, with indirect consequences for animal welfare. This study examined whether lateral bias, in the form of paw preference, can be used as a tool for assessing breed differences in emotional reactivity in the cat. The paw preferences of 4 commonly owned breeds were tested using a food-reaching challenge. Cats were more likely to be paw-preferent than ambilateral. Maine Coons, Ragdolls and Bengals were more likely to be paw-preferent than ambilateral, although only the Bengals showed a consistent preference for using one paw (left) over the other. The strength of the cats’ paw use was related to cat breed, with Persians being more weakly lateralised. Direction of paw use was unrelated to feline breed, but strongly sex-related, with male cats showing a left paw preference and females displaying a right-sided bias. We propose that paw preference measurement could provide a useful method for assessing emotional reactivity in domestic cats. Such information would be of benefit to individuals considering the acquisition of a new cat, and, in the longer term, may help to foster more successful cat-owner relationships, leading to indirect benefits to feline welfare.


Sign in / Sign up

Export Citation Format

Share Document