scholarly journals Emerging highly pathogenic H5 avian influenza viruses in France during winter 2015/16: phylogenetic analyses and markers for zoonotic potential

2017 ◽  
Vol 22 (9) ◽  
Author(s):  
François-Xavier Briand ◽  
Audrey Schmitz ◽  
Katell Ogor ◽  
Aurélie Le Prioux ◽  
Cécile Guillou-Cloarec ◽  
...  

Several new highly pathogenic (HP) H5 avian influenza virus (AIV) have been detected in poultry farms from south-western France since November 2015, among which an HP H5N1. The zoonotic potential and origin of these AIVs immediately became matters of concern. One virus of each subtype H5N1 (150169a), H5N2 (150233) and H5N9 (150236) was characterised. All proved highly pathogenic for poultry as demonstrated molecularly by the presence of a polybasic cleavage site in their HA protein – with a sequence (HQRRKR/GLF) previously unknown among avian H5 HPAI viruses – or experimentally by the in vivo demonstration of an intravenous pathogenicity index of 2.9 for the H5N1 HP isolate. Phylogenetic analyses based on the full genomes obtained by NGS confirmed that the eight viral segments of the three isolates were all part of avian Eurasian phylogenetic lineage but differed from the Gs/Gd/1/96-like lineage. The study of the genetic characteristics at specific amino acid positions relevant for modulating the adaptation to and the virulence for mammals showed that presently, these viruses possess most molecular features characteristic of AIV and lack some major characteristics required for efficient respiratory transmission to or between humans. The three isolates are therefore predicted to have no significant pandemic potential.

2007 ◽  
Vol 81 (21) ◽  
pp. 11612-11619 ◽  
Author(s):  
Erica Spackman ◽  
David E. Swayne ◽  
David L. Suarez ◽  
Dennis A. Senne ◽  
Janice C. Pedersen ◽  
...  

ABSTRACT Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 105.3 and 107.5 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage.


2016 ◽  
Vol 90 (23) ◽  
pp. 10936-10944 ◽  
Author(s):  
Xiangjie Sun ◽  
Jessica A. Belser ◽  
Joanna A. Pulit-Penaloza ◽  
Hui Zeng ◽  
Amanda Lewis ◽  
...  

ABSTRACTAvian influenza A H7 viruses have caused multiple outbreaks in domestic poultry throughout North America, resulting in occasional infections of humans in close contact with affected birds. In early 2016, the presence of H7N8 highly pathogenic avian influenza (HPAI) viruses and closely related H7N8 low-pathogenic avian influenza (LPAI) viruses was confirmed in commercial turkey farms in Indiana. These H7N8 viruses represent the first isolation of this subtype in domestic poultry in North America, and their virulence in mammalian hosts and the potential risk for human infection are largely unknown. In this study, we assessed the ability of H7N8 HPAI and LPAI viruses to replicatein vitroin human airway cells andin vivoin mouse and ferret models. Both H7N8 viruses replicated efficientlyin vitroandin vivo, but they exhibited substantial differences in disease severity in mammals. In mice, while the H7N8 LPAI virus largely remained avirulent, the H7N8 HPAI virus exhibited greater infectivity, virulence, and lethality. Both H7N8 viruses replicated similarly in ferrets, but only the H7N8 HPAI virus caused moderate weight loss, lethargy, and mortality. The H7N8 LPAI virus displayed limited transmissibility in ferrets placed in direct contact with an inoculated animal, while no transmission of H7N8 HPAI virus was detected. Our results indicate that the H7N8 avian influenza viruses from Indiana are able to replicate in mammals and cause severe disease but with limited transmission. The recent appearance of H7N8 viruses in domestic poultry highlights the need for continued influenza surveillance in wild birds and close monitoring of the potential risk to human health.IMPORTANCEH7 influenza viruses circulate in wild birds in the United States, but when the virus emerges in domestic poultry populations, the frequency of human exposure and the potential for human infections increases. An H7N8 highly pathogenic avian influenza (HPAI) virus and an H7N8 low-pathogenic avian influenza (LPAI) virus were recently isolated from commercial turkey farms in Indiana. To determine the risk that these influenza viruses pose to humans, we assessed their pathogenesis and transmissionin vitroand in mammalian models. We found that the H7N8 HPAI virus exhibited enhanced virulence, and although transmission was only observed with the H7N8 LPAI virus, the ability of this H7 virus to transmit in a mammalian host and quickly evolve to a more virulent strain is cause for concern. Our findings offer important insight into the potential for emerging H7 avian influenza viruses to acquire the ability to cause disease and transmit among mammals.


2020 ◽  
Vol 21 (7) ◽  
pp. 2353
Author(s):  
Marcel Gischke ◽  
Reiner Ulrich ◽  
Olanrewaju I. Fatola ◽  
David Scheibner ◽  
Ahmed H. Salaheldin ◽  
...  

Highly pathogenic (HP) avian influenza viruses (AIVs) are naturally restricted to H5 and H7 subtypes with a polybasic cleavage site (CS) in hemagglutinin (HA) and any AIV with an intravenous pathogenicity index (IVPI) ≥ 1.2. Although only a few non-H5/H7 viruses fulfill the criteria of HPAIV; it remains unclear why these viruses did not spread in domestic birds. In 2012, a unique H4N2 virus with a polybasic CS 322PEKRRTR/G329 was isolated from quails in California which, however, was avirulent in chickens. This is the only known non-H5/H7 virus with four basic amino acids in the HACS. Here, we investigated the virulence of this virus in chickens after expansion of the polybasic CS by substitution of T327R (322PEKRRRR/G329) or T327K (322PEKRRKR/G329) with or without reassortment with HPAIV H5N1 and H7N7. The impact of single mutations or reassortment on virus fitness in vitro and in vivo was studied. Efficient cell culture replication of T327R/K carrying H4N2 viruses increased by treatment with trypsin, particularly in MDCK cells, and reassortment with HPAIV H5N1. Replication, virus excretion and bird-to-bird transmission of H4N2 was remarkably compromised by the CS mutations, but restored after reassortment with HPAIV H5N1, although not with HPAIV H7N7. Viruses carrying the H4-HA with or without R327 or K327 mutations and the other seven gene segments from HPAIV H5N1 exhibited high virulence and efficient transmission in chickens. Together, increasing the number of basic amino acids in the H4N2 HACS was detrimental for viral fitness particularly in vivo but compensated by reassortment with HPAIV H5N1. This may explain the absence of non-H5/H7 HPAIV in poultry.


2007 ◽  
Vol 81 (14) ◽  
pp. 7529-7539 ◽  
Author(s):  
L. Duan ◽  
L. Campitelli ◽  
X. H. Fan ◽  
Y. H. C. Leung ◽  
D. Vijaykrishna ◽  
...  

ABSTRACT Highly pathogenic avian influenza (HPAI) H5N1 viruses are now endemic in many Asian countries, resulting in repeated outbreaks in poultry and increased cases of human infection. The immediate precursor of these HPAI viruses is believed to be A/goose/Guangdong/1/96 (Gs/GD)-like H5N1 HPAI viruses first detected in Guangdong, China, in 1996. From 2000 onwards, many novel reassortant H5N1 influenza viruses or genotypes have emerged in southern China. However, precursors of the Gs/GD-like viruses and their subsequent reassortants have not been fully determined. Here we characterize low-pathogenic avian influenza (LPAI) H5 subtype viruses isolated from poultry and migratory birds in southern China and Europe from the 1970s to the 2000s. Phylogenetic analyses revealed that Gs/GD-like virus was likely derived from an LPAI H5 virus in migratory birds. However, its variants arose from multiple reassortments between Gs/GD-like virus and viruses from migratory birds or with those Eurasian viruses isolated in the 1970s. It is of note that unlike HPAI H5N1 viruses, those recent LPAI H5 viruses have not become established in aquatic or terrestrial poultry. Phylogenetic analyses revealed the dynamic nature of the influenza virus gene pool in Eurasia with repeated transmissions between the eastern and western extremities of the continent. The data also show reassortment between influenza viruses from domestic and migratory birds in this region that has contributed to the expanded diversity of the influenza virus gene pool among poultry in Eurasia.


2018 ◽  
Vol 92 (17) ◽  
Author(s):  
Ute Wessels ◽  
Elsayed M. Abdelwhab ◽  
Jutta Veits ◽  
Donata Hoffmann ◽  
Svenja Mamerow ◽  
...  

ABSTRACTZoonotic highly pathogenic avian influenza viruses (HPAIV) have raised serious public health concerns of a novel pandemic. These strains emerge from low-pathogenic precursors by the acquisition of a polybasic hemagglutinin (HA) cleavage site, the prime virulence determinant. However, required coadaptations of the HA early in HPAIV evolution remained uncertain. To address this question, we generated several HA1/HA2 chimeras and point mutants of an H5N1 clade 2.2.2 HPAIV and an H5N1 low-pathogenic strain. Initial surveys of 3,385 HPAIV H5 HA sequences revealed frequencies of 0.5% for the single amino acids 123R and 124I but a frequency of 97.5% for the dual combination. This highly conserved dual motif is still retained in contemporary H5 HPAIV, including the novel H5NX reassortants carrying neuraminidases of different subtypes, like the H5N8 and the zoonotic H5N6 strains. Remarkably, the earliest Asian H5N1 HPAIV, the Goose/Guangdong strains from 1996/1997, carried 123R only, whereas 124I appeared later in 1997. Experimental reversion in the HPAIV HA to the two residues 123S and124T, characteristic of low-pathogenic strains, prevented virus rescue, while the single substitutions attenuated the virus in both chicken and mice considerably, accompanied by a decreased HA fusion pH. This increased pH sensitivity of H5 HPAIV enables HA-mediated membrane fusion at a higher endosomal pH. Therefore, this HA adaptation may permit infection of cells with less-acidic endosomes, e.g., within the respiratory tract, resulting in an extended organ tropism. Taken together, HA coadaptation to increased acid sensitivity promoted the early evolution of H5 Goose/Guangdong-like HPAIV strains and is still required for their zoonotic potential.IMPORTANCEZoonotic highly pathogenic avian influenza viruses (HPAIV) have raised serious public health concerns of a novel pandemic. Their prime virulence determinant is the polybasic hemagglutinin (HA) cleavage site. However, required coadaptations in the HA (and other genes) remained uncertain. Here, we identified the dual motif 123R/124I in the HA head that increases the activation pH of HA-mediated membrane fusion, essential for virus genome release into the cytoplasm. This motif is extremely predominant in H5 HPAIV and emerged already in the earliest 1997 H5N1 HPAIV. Reversion to 123S or 124T, characteristic of low-pathogenic strains, attenuated the virus in chicken and mice, accompanied by a decreased HA activation pH. This increased pH sensitivity of H5 HPAIV extends the viral tropism to cells with less-acidic endosomes, e.g., within the respiratory tract. Therefore, early HA adaptation to increased acid sensitivity promoted the emergence of H5 Goose/Guangdong-like HPAIV strains and is required for their zoonotic potential.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Su-Jin Park ◽  
Mukesh Kumar ◽  
Hyeok-il Kwon ◽  
Rak-Kyun Seong ◽  
Kyudong Han ◽  
...  

Abstract Emerging outbreaks of newly found, highly pathogenic avian influenza (HPAI) A(H5N8) viruses have been reported globally. Previous studies have indicated that H5N8 pathogenicity in mice is relatively moderate compared with H5N1 pathogenicity. However, detailed mechanisms underlying avian influenza pathogenicity are still undetermined. We used a high-throughput RNA-seq method to analyse host and pathogen transcriptomes in the lungs of mice infected with A/MD/Korea/W452/2014 (H5N8) and A/EM/Korea/W149/2006 (H5N1) viruses. Sequenced numbers of viral transcripts and expression levels of host immune-related genes at 1 day post infection (dpi) were higher in H5N8-infected than H5N1-infected mice. Dual sequencing of viral transcripts revealed that in contrast to the observations at 1 dpi, higher number of H5N1 genes than H5N8 genes was sequenced at 3 and 7 dpi, which is consistent with higher viral titres and virulence observed in infected lungs in vivo. Ingenuity pathway analysis revealed a more significant upregulation of death receptor signalling, driven by H5N1 than with H5N8 infection at 3 and 7 dpi. Early induction of immune response-related genes may elicit protection in H5N8-infected mice, which correlates with moderate pathogenicity in vivo. Collectively, our data provide new insight into the underlying mechanisms of the differential pathogenicity of avian influenza viruses.


2016 ◽  
Vol 161 (10) ◽  
pp. 2749-2764 ◽  
Author(s):  
Young-Jae Si ◽  
Won Suk Choi ◽  
Young-Il Kim ◽  
In-Won Lee ◽  
Hyeok-Il Kwon ◽  
...  

2015 ◽  
Vol 90 (1) ◽  
pp. 400-411 ◽  
Author(s):  
El-Sayed M. Abdelwhab ◽  
Jutta Veits ◽  
Kerstin Tauscher ◽  
Mario Ziller ◽  
Jens P. Teifke ◽  
...  

ABSTRACT In 1999, after circulation for a few months in poultry in Italy, low-pathogenic (LP) avian influenza (AI) H7N1 virus mutated into a highly pathogenic (HP) form by acquisition of a unique multibasic cleavage site (mCS), PEIPKGSRVRR*GLF (asterisk indicates the cleavage site), in the hemagglutinin (HA) and additional alterations with hitherto unknown biological function. To elucidate these virulence-determining alterations, recombinant H7N1 viruses carrying specific mutations in the HA of LPAI A/chicken/Italy/473/1999 virus (Lp) and HPAI A/chicken/Italy/445/1999 virus (Hp) were generated. Hp with a monobasic CS or carrying the HA of Lp induced only mild or no disease in chickens, thus resembling Lp. Conversely, Lp with the HA of Hp was as virulent and transmissible as Hp. While Lp with a multibasic cleavage site (Lp_CS445) was less virulent than Hp, full virulence was exhibited when HA2 was replaced by that of Hp. In HA2, three amino acid differences consistently detected between LP and HP H7N1 viruses were successively introduced into Lp_CS445. Q450L in the HA2 stem domain increased virulence and transmission but was detrimental to replication in cell culture, probably due to low-pH activation of HA. A436T and/or K536R restored viral replication in vitro and in vivo . Viruses possessing A436T and K536R were observed early in the HPAI outbreak but were later superseded by viruses carrying all three mutations. Together, besides the mCS, stepwise mutations in HA2 increased the fitness of the Italian H7N1 virus in vivo . The shift toward higher virulence in the field was most likely gradual with rapid optimization. IMPORTANCE In 1999, after 9 months of circulation of low-pathogenic (LP) avian influenza virus (AIV), a devastating highly pathogenic (HP) H7N1 AIV emerged in poultry, marking the largest epidemic of AIV reported in a Western country. The HPAIV possessed a unique multibasic cleavage site (mCS) complying with the minimum motif for HPAIV. The main finding in this report is the identification of three mutations in the HA2 domain that are required for replication and stability, as well as for virulence, transmission, and tropism of H7N1 in chickens. In addition to the mCS, Q450L was required for full virulence and transmissibility of the virus. Nonetheless, it was detrimental to virus replication and required A436T and/or K536R to restore replication, systemic spread, and stability. These results are important for better understanding of the evolution of highly pathogenic avian influenza viruses from low-pathogenic precursors.


Sign in / Sign up

Export Citation Format

Share Document