scholarly journals On the T-X Class of Topp Leone-G Family of Distributions: Statistical Properties and Applications

2021 ◽  
Vol 2 ◽  
pp. 2
Author(s):  
Femi Samuel Adeyinka

This article investigates the T-X class of Topp Leone- G family of distributions. Some members of the new family are discussed.  The exponential-Topp Leone-exponential distribution (ETLED) which is one of the members of the family is derived and some of its properties which include central and non-central moments, quantiles, incomplete moments, conditional moments, mean deviation, Bonferroni and Lorenz curves, survival and hazard functions, moment generating function, characteristic function and R`enyi entropy are established. The probability density function (pdf) of order statistics of the model is obtained and the parameter estimation is addressed with the maximum likelihood method (MLE). Three real data sets are used to demonstrate its application and the results are compared with two other models in the literature.

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1114
Author(s):  
Guillermo Martínez-Flórez ◽  
Roger Tovar-Falón ◽  
María Martínez-Guerra

This paper introduces a new family of distributions for modelling censored multimodal data. The model extends the widely known tobit model by introducing two parameters that control the shape and the asymmetry of the distribution. Basic properties of this new family of distributions are studied in detail and a model for censored positive data is also studied. The problem of estimating parameters is addressed by considering the maximum likelihood method. The score functions and the elements of the observed information matrix are given. Finally, three applications to real data sets are reported to illustrate the developed methodology.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Suleman Nasiru

The need to develop generalizations of existing statistical distributions to make them more flexible in modeling real data sets is vital in parametric statistical modeling and inference. Thus, this study develops a new class of distributions called the extended odd Fréchet family of distributions for modifying existing standard distributions. Two special models named the extended odd Fréchet Nadarajah-Haghighi and extended odd Fréchet Weibull distributions are proposed using the developed family. The densities and the hazard rate functions of the two special distributions exhibit different kinds of monotonic and nonmonotonic shapes. The maximum likelihood method is used to develop estimators for the parameters of the new class of distributions. The application of the special distributions is illustrated by means of a real data set. The results revealed that the special distributions developed from the new family can provide reasonable parametric fit to the given data set compared to other existing distributions.


2017 ◽  
Vol 6 (5) ◽  
pp. 65 ◽  
Author(s):  
Amal S. Hassan ◽  
Saeed E. Hemeda ◽  
Sudhansu S. Maiti ◽  
Sukanta Pramanik

In this paper, we present a new family, depending on additive Weibull random variable as a generator, called the generalized additive Weibull generated-family (GAW-G) of distributions with two extra parameters. The proposed family involves several of the most famous classical distributions as well as the new generalized Weibull-G family which already accomplished by Cordeiro et al. (2015). Four special models are displayed. The expressions for the incomplete and ordinary moments, quantile, order statistics, mean deviations, Lorenz and Benferroni curves are derived. Maximum likelihood method of estimation is employed to obtain the parameter estimates of the family. The simulation study of the new models is conducted. The efficiency and importance of the new generated family is examined through real data sets.


Author(s):  
Ibrahim Elbatal ◽  
A. Aldukeel

In this article, we introduce a new distribution called the McDonald Erlangtruncated exponential distribution. Various structural properties including explicit expressions for the moments, moment generating function, mean deviation of the new distribution are derived. The estimation of the model parameters is performed by maximum likelihood method. The usefulness of the new distribution is illustrated by two real data sets. The new model is much better than other important competitive models in modeling relief times and survival times data sets.


Author(s):  
Jamilu Yunusa Falgore ◽  
Sani Ibrahim Doguwa

A new generator of continuous distributions called the Inverse Lomax-Exponentiated G family, which has three extra positive parameters is proposed. The structural properties of the new family that holds for any continuous baseline model including explicit density function expressions, moments, inequality measurements, moment generating function, reliability functions, Renyi and Shanon entropies, and distribution of order statistics are derived. A Monte Carlo simulation to test the efficiency of the maximum likelihood estimates is conducted. The application of the new sub-model to the two data sets using the maximum likelihood method indicates that the new model is better than the existing competitors.


Author(s):  
Zubair Ahmad ◽  
M. Elgarhy ◽  
G.G. Hamedani ◽  
Nadeem Shafique Butt

A new family of distributions called the odd generalized N-H is introduced and studied. Four new special models are presented. Some mathematical properties of the odd generalized N-H family are studied. Explicit expressions for the moments, probability weighted, quantile function, mean deviation, order statistics and Rényi entropy are investigated. Characterizations based on the truncated moments, hazard function and conditional expectations are presented for the generated family. Parameter estimates of the family are obtained based on maximum likelihood procedure. Two real data sets are employed to show the usefulness of the new family.


Filomat ◽  
2019 ◽  
Vol 33 (9) ◽  
pp. 2635-2652 ◽  
Author(s):  
M. El-Morshedy ◽  
M.S. Eliwa

In this paper, a new generator of continuous distributions called the odd flexible Weibull-H family is proposed and studied. Some of its statistical properties including quantile, skewness, kurtosis, hazard rate function, moments, incomplete moments, mean deviations, coefficient of variation, Bonferroni and Lorenz curves, moments of the residual (past) lifetimes and entropies are studied. Two special models are introduced and discussed in-detail. The maximum likelihood method is used to estimate the model parameters based on complete and upper record data. Adetailed simulation study is carried out to examine the bias and mean square error of maximum likelihood estimators. Finally, three applications to real data sets show the flexibility of the new family.


Author(s):  
A. A. Sanusi ◽  
S. I. S. Doguwa ◽  
I. Audu ◽  
Y. M. Baraya

In this paper, we developed a new class of continuous distributions called Burr X Exponential-G Family. Also, we obtained sub-models of this family of distributions such as Burr X Exponential-Rayleigh (BXE-R) and Burr X Exponential Lomax (BXE-Lx) distributions; by showing their respective densities functions. Some structural properties of the proposed family of distributions were derived such as moment, moment generating function, probability weighted moment, renyi entropy and order statistics. We estimate the parameters of the model by using Maximum Likelihood methods. Finally, the results obtained are validated using two real data sets. The results show that BXE-Lx distribution provides better fit in the data sets than some other well known distributions. However, this new family of distributions will serve as an additional generator for developing new sub models to modeling positive real data sets.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
M. Shrahili ◽  
I. Elbatal

The truncated Cauchy power odd Fréchet-G family of distributions is presented in this article. This family’s unique models are launched. Statistical properties of the new family are proposed, such as density function expansion, moments, incomplete moments, mean deviation, Bonferroni and Lorenz curves, and entropy. We investigate the maximum likelihood method for predicting model parameters of the new family. Two real-world datasets are used to show the importance and flexibility of the new family by using the truncated Cauchy power odd Fréchet exponential model as example of the family and compare it with some known models, and this model proves the importance and the flexibility for the new family.


2020 ◽  
Vol 8 (4) ◽  
pp. 934-949
Author(s):  
Morad Alizadeh ◽  
Alireza Nematollahi ◽  
Emrah Altun ◽  
Mahdi Rasekhi

In this paper, we propose a new class of continuous distributions with two extra shape parameters called the a new type I half logistic-G family of distributions. Some of important properties including ordinary moments, quantiles, moment generating function, mean deviation, moment of residual life, moment of reversed residual life, order statistics and extreme value are obtained. To estimate the model parameters, the maximum likelihood method is also applied by means of Monte Carlo simulation study. A new location-scale regression model based on the new type I half logistic-Weibull distribution is then introduced. Applications of the proposed family is demonstrated in many fields such as survival analysis and univariate data fitting. Empirical results show that the proposed models provide better fits than other well-known classes of distributions in many application fields.


Sign in / Sign up

Export Citation Format

Share Document