scholarly journals NUMERICAL SIMULATIONOF FLEXIBLE WINGOF HALE UAV USING TWO-WAY FLUID STRUCTURE INTERACTION METHOD

2017 ◽  
Vol 9 (1) ◽  
pp. 19
Author(s):  
Buyung Junaidin

This paper describes numerical simulation o f flexible High Altitude Long Endurance Unmanned Aerial Vehicle (HALE UAV)wingusing two-way fluid structure interaction (FSI) method. The HALE wing is designed with high aspect ratio. This configuration intended to reduce the vehicle induced drag and reduces the lift-loss at wingtip which caused by wingtip vortex. But the structure of the wing itself becomes more elastic that be able to give large deformation when the aerodynamic loads applied. This deformation changes the aerodynamic loads distribution on the wing that gives a new deformation to the wing structure and vice versa. This interaction in a couple process called as fluid structure interaction (FSI). ANSYS 15.0 software was used to simulate fluid structure interaction on the wing. The unsteadiness and viscous flows at low speed are evaluated using the solution o f timedependent Reynolds Averaged Navier-Stokes (RANS) with SST k-rn turbulent model. In addition, multiblock structured grids are generated to provide more accurate viscous result and to anticipate negative volume o f the mesh which may occur due to the deformation o f the wing during simulation. Five different o f simulations are performed with variation o f material characteristics including Young’s modulus and Poisson’s ratio.The results are global aerodynamic characteristics at various material characteristics.

2011 ◽  
Vol 115 (1167) ◽  
pp. 285-294 ◽  
Author(s):  
M. Guillaume ◽  
A. Gehri ◽  
P. Stephani ◽  
J. B. Vos ◽  
G. Mandanis

Abstract The Swiss Airforce is operating F/A-18C/D Aircraft since 1997. Since the aircraft’s structural design is different from the version operated by the US Navy it was necessary to carry out a structural integrity study (ASIP) which was done by The Boeing Company in St. Louis. To validate this study a full scale fatigue test facility was build at RUAG and operated from 2003 to 2005. When operating this facility difficulties were encountered with the aerodynamic loads data provided by Boeing (insufficient, not well documented, questionable data). As a result RUAG looked for alternative methods to provide the aerodynamic loads, and a large investment was made in the development of a Computational Fluid Dynamics (CFD) tool. The Navier Stokes Multi Block (NSMB) solver, which was developed in an international collaboration, was adopted. In a first phase the code was validated by comparing results of CFD calculations with wind-tunnel results, results from literature and flight test data results. In the second phase, discussed in this paper, a Fluid Structure Interaction (FSI) tool was developed to permit unsteady aero-elastic simulations. Particular attention is focused on the vertical tail since this component of the F/A-18 fighter is very sensitive to fatigue due to unsteady loads generated by buffeting phenomena.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Ehsan Borouji ◽  
Takafumi Nishino

Fluid structure interaction (FSI) simulations of the NREL 5 MW wind turbine are performed using a combination of two separate computational codes: abaqus for the finite element analysis (FEA) of turbine structures and STAR-CCM+ for the unsteady Reynolds-averaged Navier–Stokes analysis of flow around the turbine. The main aim of this study is to demonstrate the feasibility of using two-way coupled FSI simulations to predict the oscillation of the tower, as well as the rotor blades, of a full-scale wind turbine. Although the magnitude of the oscillation of the tower is much smaller than that of the blades, this oscillation is crucial for the assessment of the fatigue life of the tower. In this first part of the paper, the aerodynamic characteristics of the turbine predicted by the two-way coupled FSI simulations are discussed in comparison with those predicted by Reynolds-averaged Navier–Stokes simulations of a rigid turbine. Also, two different computational domains with a cross-sectional size of 2D × 2D and 4D × 4D (where D is the rotor diameter) are employed to investigate the blockage effect. The fatigue life assessment of the turbine is planned to be reported in the second part of the paper in the near future.


2019 ◽  
Vol 142 (3) ◽  
Author(s):  
Ali Behrouzifar ◽  
Masoud Darbandi

Abstract The fluid–structure interaction (FSI) is generally addressed in multimegawatt wind turbine calculations. From the fluid flow perspective, the semi-analytical approaches, like actuator disk (AD) model, were commonly used in wind turbine rotor calculations. Indeed, the AD model can effectively reduce the computational cost of full-scale numerical methods. Additionally, it can substantially improve the results of pure analytical methods. Despite its great advantages, the AD model has not been developed to simulate the FSI problem in wind turbine simulations. This study first examines the effect of constant (rigid) cone angle on the performance of the chosen benchmark wind turbine. As a major contribution, this work subsequently extends the rigid AD model to nonrigid applications to suitably simulate the FSI. The new developed AD-FSI solver uses the finite-volume method to calculate the aerodynamic loads and the beam theory to predict the structural behaviors. A benchmark megawatt wind turbine is simulated to examine the accuracy of the newly developed AD-FSI solver. Next, the results of this solver are compared with the results of other researchers, who applied various analytical and numerical methods to obtain their results. The comparisons indicate that the new developed solver calculates the aerodynamic loads reliably and predicts the blade deflection very accurately.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 94 ◽  
Author(s):  
Cornel Marius Murea

A monolithic semi-implicit method is presented for three-dimensional simulation of fluid–structure interaction problems. The updated Lagrangian framework is used for the structure modeled by linear elasticity equation and, for the fluid governed by the Navier–Stokes equations, we employ the Arbitrary Lagrangian Eulerian method. We use a global mesh for the fluid–structure domain where the fluid–structure interface is an interior boundary. The continuity of velocity at the interface is automatically satisfied by using globally continuous finite element for the velocity in the fluid–structure mesh. The method is fast because we solve only a linear system at each time step. Three-dimensional numerical tests are presented.


Author(s):  
Lucia Sargentini ◽  
Benjamin Cariteau ◽  
Morena Angelucci

This paper is related to fluid-structure interaction analysis of sodium cooled fast reactors core (Na-FBR). Sudden liquid evacuation between assemblies could lead to overall core movements (flowering and compaction) causing variations of core reactivity. The comprehension of the structure behavior during the evacuation could improve the knowledge about some SCRAMs for negative reactivity occurred in PHÉNIX reactor and could contribute on the study of the dynamic behavior of a FBR core. An experimental facility (PISE-2c) is designed composed by a Poly-methyl methacrylate hexagonal rods (2D-plan similitude with PHÉNIX assembly) with a very thin gap between assemblies. Another experimental device (PISE-1a) is designed and composed by a single hexagonal rod for testing the dynamic characteristics. Different experiments are envisaged: free vibrations and oscillations during water injection. A phenomenological analysis is reported showing the flow behavior in the gap and the structure response. Also computational simulations are presented in this paper. An efficient numerical method is used to solve Navier-Stokes equations coupled with structure dynamic equation. The numerical method is verified by the comparison of analytic models and experiments.


Author(s):  
Tolotra Emerry Rajaomazava ◽  
Mustapha Benaouicha ◽  
Jacques-André Astolfi

In this paper, the flow over pitching and heaving hydrofoil is investigated. The viscous incompressible Navier-Stokes problem in Arbitrary Lagrangian-Eulerian (ALE) formulation is solved using the finite elements code Cast3M. The projection method is used to uncouple the velocity and pressure fields. The implicit Euler scheme is applied for time discretization of fluid equations. The dynamics of the hydrofoil is governed by a non-linear ordinary differential equation. The non-linear coupled problem is solved using the explicit staggered algorithm. The effects of fluid-structure interaction on hydrofoil dynamics and pressure center position are analyzed.


Author(s):  
Manoj Kumar Gangadharan ◽  
Sriram Venkatachalam

Hydroelasticity is an important problem in the field of ocean engineering. It can be noted from most of the works published as well as theories proposed earlier that this particular problem was addressed based on the time independent/ frequency domain approach. In this paper, we propose a novel numerical method to address the fluid-structure interaction problem in time domain simulations. The hybrid numerical model proposed earlier for hydro-elasticity (Sriram and Ma, 2012) as well as for breaking waves (Sriram et al 2014) has been extended to study the problem of breaking wave-elastic structure interaction. The method involves strong coupling of Fully Nonlinear Potential Flow Theory (FNPT) and Navier Stokes (NS) equation using a moving overlapping zone in space and Runge kutta 2nd order with a predictor corrector scheme in time. The fluid structure interaction is achieved by a near strongly coupled partitioned procedure. The simulation was performed using Finite Element method (FEM) in the FNPT domain, Particle based method (Improved Meshless Local Petrov Galerkin based on Rankine source, IMPLG_R) in the NS domain and FEM for the structural dynamics part. The advantage of using this approach is due to high computational efficiency. The method has been applied to study the interaction between breaking waves and elastic wall.


Author(s):  
Hiroki Umeda ◽  
Hirohisa Noguchi

This paper presents a procedure for the sensitivity analysis of buckling load in fluid-structure interaction problems. In the formulation, the buckling of thin structures subjected to the pressure of viscous flow is modeled, where the geometrically nonlinear equation and the Navier-Stokes equation should be considered. These equations are solved by the strong coupling formulation and the Newton-Raphson method. In order to confirm the validity of this procedure, the arch subjected to only the static pressure of fluid is analyzed. Finally, simple optimization considering fluid-structure interaction is performed using the calculated sensitivity along with the steepest descend method and the satisfactory result is obtained.


AIP Advances ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 105108
Author(s):  
Jie Qin ◽  
Lun Li ◽  
Yongping Hao ◽  
Jiulong Xu ◽  
Fan Bai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document