scholarly journals MENTAL WORKLOAD OF AIR TRAFFIC CONTROL (ATC) PERSONNEL AT ADISUTJIPTO INTERNATIONAL AIRPORT

Vortex ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 57
Author(s):  
Via Choirul Seftiyana

Air traffic controllers are under excessive stress because of their job. This has been linked to aspects of ATC work such as high job demands, time or responsibility pressure, or inadequate equipment. Types of work that require more vigilance, such as air traffic controllers at airports, are closely related to mental jobs that require high concentration. Because there is a negative impact on a company if it gives mental workload too high or too low for its employees, it is necessary to measure it to find out the right mental workload for its employees. This study aims to calculate the mental workload felt by ATC personnel in the APP unit. Measurement of mental workload in this study using the NASA-TLX (National Aeronautics and Space Administration Task Load Index). This method measures 6 (six) dimensions of workload size, namely Mental Demand, Physical Demand, Temporal Demand, Performance, Effort and Frustation Level

Author(s):  
Norbert Fürstenau ◽  
Thea Radüntz

AbstractWe provide evidence for a power law relationship between the subjective one-dimensional Instantaneous Self Assessment workload measure (five-level ISA-WL scale) and the radio communication of air traffic controllers (ATCOs) as an objective task load variable. It corresponds to Stevens’ classical psychophysics relationship between physical stimulus and subjective response, with characteristic power law exponent γ of the order of 1. The theoretical model was validated in a human-in-the loop air traffic control simulation experiment with traffic flow as environmental stimulus that correlates positively with ATCOs frequency and duration of radio calls (task load, RC-TL) and their reported ISA-WL. The theoretical predictions together with nonlinear regression-based model parameter estimates expand previously published results that quantified the formal logistic relationship between the subjective ISA measure and simulated air traffic flow (Fürstenau et al. in Theor Issues Ergon Sci 21(6): 684–708, 2020). The present analysis refers to a psychophysics approach to mental workload suggested by (Gopher and Braune in Hum Factors 26(5): 519–532, 1984) that was recently used by (Bachelder and Godfroy-Cooper in Pilot workload esimation: synthesis of spectral requirements analysis and Weber's law, SCL Tech, San Diego, 2019) for pilot workload estimation, with a corresponding power law exponent in the typical range of Stevens’ exponents. Based on the hypothesis of cognitive resource limitation, we derived the power law by combination of the two logistic models for ISA-WL and communication TL characteristics, respectively. Despite large inter-individual variance, the theoretically predicted logistic and power law parameter values exhibit surprisingly close agreement with the regression-based estimates (for averages across participants). Significant differences between logistic ISA-WL and RC-TL scaling parameters and the corresponding Stevens exponents as ratio of these parameters quantify the TL/WL dissociation with regard to traffic flow. The sensitivity with regard to work conditions of the logistic WL-scaling parameter as well as the power law exponent was revealed by traffic scenarios with a non-nominal event: WL sensitivity increased significantly for traffic flow larger than a critical value. Initial analysis of a simultaneously measured new neurophysiological (EEG) load index (dual frequency head maps, DFHM, (Radüntz in Front Physiol 8: 1–15, 2017)) provided evidence for the power law to be applicable to the DFHM load measure as well.


Author(s):  
Tetiana Shmelova ◽  
Yuliya Sikirda

In this chapter, the authors propose the application of artificial intelligence (namely expert system and neural network) for estimating the mental workload of air traffic controllers while working at different control centers (sectors): terminal control center, approach control center, area control center. At each air traffic control center, air traffic controllers will perform the following procedures: coordination between units, aircraft transit, climbing, and descending. So with the help of the artificial intelligence (AI) and its branches expert system and neural network, it is possible to estimate the mental workload of dispatchers for a different number of aircraft, compare the workload intensity of the air traffic control sectors, and optimize the workload between sectors and control centers. The differentiating factor of an AI system from a standard software system is the characteristic ability to learn, improve, and predict. Real dispatchers, students, graduate students, and teachers of the National Aviation University took part in these researches.


Aerospace ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 260
Author(s):  
Yanjun Wang ◽  
Rongjin Hu ◽  
Siyuan Lin ◽  
Michael Schultz ◽  
Daniel Delahaye

Air traffic controllers have to make quick decisions to keep air traffic safe. Their behaviors have a significant impact on the operation of the air traffic management (ATM) system. Automation tools have enhanced the ATM system’s capability by reducing the controller’s task-load. Much attention has been devoted to developing advanced automation in the last decade. However, less is known about the impact of automation on the behaviors of air traffic controllers. Here, we empirically tested the effects of three levels of automation—including manual, attention-guided, and automated—as well as varying traffic levels on eye movements, situation awareness and mental workload. The results showed that there are significant differences in the gaze and saccade behaviors between the attention-guided group and automated group. Traffic affected eye movements under the manual mode or under the attention-guided mode, but had no effect on eye movements under the automated mode. The results also supported the use of automation for enhancing situation awareness while reducing mental workload. Our work has potential implications for the design of automation and operation procedures.


Author(s):  
N. O. Lishchynovska ◽  
◽  
O. Yu. Ilyin ◽  
Yu. P. Boyko ◽  
◽  
...  

Analysis of the problem of implementation of automated air traffic control systems showed that automation in aviation began to be used primarily to solve navigation problems and control various systems. The widespread introduction of computer-aided automation in ground-based air traffic control systems has freed air traffic controllers and air traffic controllers from time-consuming computational operations and made it possible to automate a number of complex tasks and thus significantly increase flight safety. Further development of aviation equipment, information technology, radio navigation and surveillance requires a rapid solution of complex problems with high accuracy, which necessitated the improvement of existing and creation of fundamentally new technical means that meet the requirements of modern aviation and international air traffic regulations. Such technical means include EGNOS systems. The study of the proposed location for the EGNOS RIMS station at the Kyiv International Airport (Zhulyany) was carried out. Thanks to the fruitful support of the DCA provided by the GSA contractor ThalesAleniaSpace, the study helped to gather the necessary data to work offline. This offline processing is complete and issues have been identified. The interference that has been selected affects the location. One of the key criteria for site selection is the radio frequency (RF) environment, as environmental conditions have a direct negative impact on the performance of the EGNOS system. It turns out that the measurements carried out during the study highlighted the sources of interference, the power of which exceeds the required level in the used frequency bands GPS L1 and L2. as these interferences will adversely affect the performance of the EGNOS RIMS receiver. One way to restore compliance is to study these interference sources and remove them if possible. On the other hand, the proposed location at Kyiv International Airport (Zhulyany) provides a promising level of compliance for life safety services.


Author(s):  
Han Qiao ◽  
Jingyu Zhang ◽  
Liang Zhang ◽  
Yazhe Li ◽  
Shayne Loft

Objective This study examined whether professional air traffic controllers (ATCos) were subject to peak-end effects in reporting their mental workload after performing an air traffic control task, and in predicting their mental workload in future scenarios. Background In affective experience studies, people’s evaluation of a period of experience is strongly influenced by the most intense (peak) point and the endpoint. However, whether the effects exist in mental workload evaluations made by professional operators is still not known. Method In Study 1, 20 ATCos performed air traffic control scenarios on high-fidelity radar simulators and reported their mental workload. We used a 2 (high peak, low peak) × 2 (high end, low end) within-subject design. In Study 2, another group of 43 ATCos completed a survey asking them to predict their mental workload given the same air traffic control scenarios. Results In Study 1, ATCos reported higher mental workload after completing the high-peak and the high-end scenarios. In contrast, in Study 2, ATCos predicted the peak workload effect but not the end workload effect when asked to predict their experience in dealing with the same scenarios. Conclusion Peak and end effects exist in subjective mental workload evaluation, but experts only had meta-cognitive awareness of the peak effect, and not the end effect. Application Researchers and practitioners that use subjective workload estimates for work design decisions need to be aware of the potential impact of peak and end task demand effects on subjective mental workload ratings provided by expert operators.


2019 ◽  
Vol 9 (1) ◽  
pp. 2-11
Author(s):  
Marina Efthymiou ◽  
Frank Fichert ◽  
Olaf Lantzsch

Abstract. The paper examines the workload perceived by air traffic control officers (ATCOs) and pilots during continuous descent operations (CDOs), applying closed- and open-path procedures. CDOs reduce fuel consumption and noise emissions. Therefore, they are supported by airports as well as airlines. However, their use often depends on pilots asking for CDOs and controllers giving approval and directions. An adapted NASA Total Load Index (TLX) was used to measure the workload perception of ATCOs and pilots when applying CDOs at selected European airports. The main finding is that ATCOs’ workload increased when giving both closed- and open-path CDOs, which may have a negative impact on their willingness to apply CDOs. The main problem reported by pilots was insufficient distance-to-go information provided by ATCOs. The workload change is important when considering the use of CDOs.


Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 170
Author(s):  
Ricardo Palma Fraga ◽  
Ziho Kang ◽  
Jerry M. Crutchfield ◽  
Saptarshi Mandal

The role of the en route air traffic control specialist (ATCS) is vital to maintaining safety and efficiency within the National Airspace System (NAS). ATCSs must vigilantly scan the airspace under their control and adjacent airspaces using an En Route Automation Modernization (ERAM) radar display. The intent of this research is to provide an understanding of the expert controller visual search and aircraft conflict mitigation strategies that could be used as scaffolding methods during ATCS training. Interviews and experiments were conducted to elicit visual scanning and conflict mitigation strategies from the retired controllers who were employed as air traffic control instructors. The interview results were characterized and classified using various heuristics. In particular, representative visual scanpaths were identified, which accord with the interview results of the visual search strategies. The highlights of our findings include: (1) participants used systematic search patterns, such as circular, spiral, linear or quadrant-based, to extract operation-relevant information; (2) participants applied an information hierarchy when aircraft information was cognitively processed (altitude -> direction -> speed); (3) altitude or direction changes were generally preferred over speed changes when imminent potential conflicts were mitigated. Potential applications exist in the implementation of the findings into the training curriculum of candidates.


Author(s):  
Jamie D. Barrett ◽  
Brett Torrence ◽  
Michelle Bryant ◽  
Linda Pierce ◽  
Julia Buck

The primary mission of the Federal Aviation Administration (FAA) is to maintain the safety of the National Airspace System (NAS). As part of this mission, the FAA is tasked with ensuring that future air traffic controllers are adequately trained to perform the high-risk job of directing air traffic. The FAA Academy curriculum for newly hired controllers involves 3-4 months of intensive lessons and performance assessments. It has been suggested that this training program is quite stressful, and successful trainees tend to be those who can better manage stress. To support ATC trainees, researchers at the Civil Aerospace Medical Institute (CAMI) have conducted operational research to develop and evaluate a stress management training to help trainees manage their stress during training at the FAA Academy.


1978 ◽  
Vol 22 (1) ◽  
pp. 485-485
Author(s):  
John G. Kreifeldt

The present national Air Traffic Control system is a ground-centralized, man intensive system which through design allows relatively little meaningful pilot participation in decision making. The negative impact of this existing design can be measured in delays, dollars and lives. The FAA's design plans for the future ATC system will result in an even more intensive ground-centralized system with even further reduction of pilot decision making participation. In addition, controllers will also be removed from on-line decision making through anticipated automation of some or all of this critical function. Recent congressional hearings indicate that neither pilots nor controllers are happy or sanguine regarding the FAA's design for the future ATC system.


Sign in / Sign up

Export Citation Format

Share Document