scholarly journals Sustainability Comparison for Steel and Basalt Fiber Reinforcement, Landfills, Leachate Reservoirs and Multi-Functional Structure

2019 ◽  
Vol 5 (1) ◽  
pp. 172 ◽  
Author(s):  
IfeOluwa B. Adejuyigbe ◽  
Paschal C. Chiadighikaobi ◽  
Donatus A. Okpara

To a large extend sustainable construction of any structure greatly depends on the materials used in its formation. Traditionally, materials such as bricks, mortar, steels are still important components of most buildings. But modern technology is equally changing how materials are created and used.Based on the above explanation, the objective of this paper was to compare the steel structures with basalt fiber reinforced concrete. As basalt fiber is still not wide spread, this paper focus on the advantages, usages and applications of basalt fiber reinforced concrete to solve construction and structural challenges. The method and analysis used in this paper was derived from research and works done by previous authors on similar topics. Previous research information show that producers and users of these materials make choice of building materials to depend on the area the structure is proposed to be built and on the taste and ideas given by the client. Their consideration is often devoid of environmental, psychological, social and economy factors. The research methods lead to the understanding on the use and importance of basalt fiber concrete for landfills, leachate reservoirs and multifunctional structure.This paper helps structural users and engineers to know that green materials with good environmental characteristics that support nature are being considered as best construction materials due to what they are composed of. Waste and cost are also crucial as far as construction materials are concern. Even now, management of waste products from landfills specially leachates requires better construction designs in tropical region like Nigeria. More so, in line with the recent safe the climate calls, efforts to select the kind of material used in raising structures are becoming unavoidable.

Author(s):  
Samofeev Nikita ◽  
Zemfira Gareeva ◽  
Radmir Musin ◽  
Elvira Khasanova ◽  
Rinat Shaikhmetov ◽  
...  

Modern road constructions go through a whole range of different loads of static and dynamic nature; therefore, higher-quality materials and solutions are required for the roads of the corresponding class, ensuring their compliance with various climatic, geological and economic factors. Currently used road constructions have different basement, they can be of natural or artificial type. Designing a foundation on a concrete base is considered as the most enduring, however, there are a number of aspects that significantly affect their durability. Improving their reliability and quality is an important promising direction in the study of the use of new building materials. The article shows the possibility of improving the quality of the foundations of road structures through the use of poly-reinforced fiber-reinforced concrete. Compared with metal fiber, polypropylene fiber gives the desired effect of reducing the weight of the structure and the cost. There is a significant increase in the waterproof performance of fiber-reinforced concrete, which is especially important for drainage sections of road construction foundations. The authors determined that a significant improvement in the performance of fibrous concrete is achieved, when the polydisperse reinforcement of the concrete matrix use polypropylene (0.3 %) and steel (1.7 %) fiber. In this case, the first option has an impact on crack resistance, and the use of steel – on strength. Thus, with this ratio of reinforcement with various fibers, a synergistic effect of improving the static and dynamic indicators of fibrous concrete is achieved. According to authors, bench studies of reinforcement of fiber-reinforced concrete structures for the foundations of roads show their high economic efficiency and reduce the cost of 1 m3 of the finished structure to 16 %.


2019 ◽  
Vol 974 ◽  
pp. 14-19
Author(s):  
V.B. Babaev ◽  
Natalia I. Alfimova ◽  
Victoria V. Nelubova ◽  
L.N. Botsman

The development of modern construction technologies requires the development of efficient building materials with a unique property set and the improvement of existing ones. Fiber-reinforced concrete is one of the types of effective composites that meets the specified requirements, ensuring the structures operation reliability. The difficulty of achieving its maximum physical and mechanical characteristics is due to the complexity of the fiber equal distribution in the concrete matrix. Studies aimed at the optimization of the formulation and technological manufacture parameters of fiber-reinforced fine concrete, have revealed that from the perspective of obtaining products with optimal physical and mechanical characteristics, it is most feasible to introduce the agglutinant sand (cement + sand) of pre-prepared suspension from fibers, water of mixing and naphthalene formaldehyde plasticizer. Optimal dosages of input products were also revealed (basalt fiber, cement, plasticizer), which made it possible to create mixes of fine concrete and products based on it with class B25-B60 for compressive strength and Btb2,8-Btb6,0 for bending, frost resistance not less than F300.


2020 ◽  
Vol 198 ◽  
pp. 01010
Author(s):  
Duo Wu

Concrete structure will be corroded under acid rain scouring and soaking for a long time, which has a great influence on its durability life. In order to further study the damage characteristics of fiber reinforced concrete under acid rain erosion, the formation mechanism of acid rain and its influence on the corrosion and deterioration of concrete and fiber materials were analyzed in this paper. Taking basalt fiber concrete as an example, the characteristics such as porosity, compressive strength and mechanical indexes were studied and analyzed. Moreover, the reasons for the optimal fiber content was briefly analyzed. The results show that the inner structure of basalt concrete mixed with 0.1% fiber was the most stable and the corrosion resistance was the most satisfying.This conclusion has certain reference significance for the corrosion damage research of fiber reinforced concrete.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Yang Lv ◽  
Xueqian Wu ◽  
Mengran Gao ◽  
Jiaxin Chen ◽  
Yuhao Zhu ◽  
...  

Basalt fiber has arisen new perspectives due to the potential low cost and excellent mechanical performance, together with the use of environmental friendly coir can be beneficial to the development of sustainable construction. In this study, a new composite structure called basalt fiber reinforced polymer (BFRP) tube encased coconut fiber reinforced concrete (CFRC) is developed. The 28-day compression strength of the plain concrete is about 15 MPa, which represents the low-strength poor-quality concrete widely existing in many old buildings and developing countries. Three types of BFRP tubes, i.e., 2-layer, 4-layer, and 6-layer, with the inner diameter of 100 mm and a length of 520 mm, were prepared. The plain concrete (PC) and CFRC were poured and cured in these tubes to fabricated BFRP tube confined long cylindrical beams. Three PC cylindrical beams and 3 CFRC cylindrical beams were prepared to be the control group. The four-point bending tests of these specimens were carried out to investigate the enhancement due to the BFRP tube and coir reinforcement. The load-carrying capacity, force-displacement relationship, failure mode, and the cracking moment were analyzed. Results show that both BFRP tube confined plain concrete (PC) and BFRP tube confined CFRC have excellent flexural strength and ductility, and the inclusion of the coir can further enhance the ductility of the concrete.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Dao-yuan Wang ◽  
Jia-suo Qi ◽  
Guang-yao Cui ◽  
Yanling Yang ◽  
Jie Chang

Adding fiber can improve the brittleness of plain concrete. Compared with plain concrete, basalt fiber-reinforced concrete has the advantages of strengthening, toughening, and crack resistance. Compared with steel fiber-reinforced concrete, basalt fiber-reinforced concrete has better construction performance. Basalt fiber concrete is a type of inorganic material with environmental protection and high mechanical properties, which has an important mechanical advantage for controlling the deformation of the soft surrounding rock tunnel. Through the indoor model test of mechanical behavior of reinforced concrete and basalt fiber-reinforced concrete lining, the bearing characteristics of basalt fiber-reinforced concrete lining was studied. The results show that, compared with reinforced concrete, the initial crack load of basalt fiber-reinforced concrete is increased by 20%; the toughness of lining structure is enhanced by adding basalt fiber, and the lining can still bear large bending moment and deformation after the initial crack appears; after the initial crack appears, the bearing characteristic curve of reinforced concrete lining rises slowly and converges rapidly; the bearing characteristic curve of basalt fiber-reinforced concrete lining rises slowly, and there is no sign of convergence when it reaches 2 times of initial crack load. For the soft surrounding rock tunnel, it is necessary to seal the rock surface as early as possible, provide support as soon as possible, and have a certain deformation capacity. Basalt fiber-reinforced concrete can better meet these needs.


Sign in / Sign up

Export Citation Format

Share Document