scholarly journals Ferrofluid based squeeze film for a rough conical bearing with deformation effect

10.29007/wlbc ◽  
2018 ◽  
Author(s):  
Jimit Patel ◽  
Mukesh Shimpi ◽  
Gunumani M Deheri

This paper aims to discuss the combined effect of longitudinal surface roughness and deformation on the behavior of a ferrofluid based squeeze film in conical plates. The Neuringer and Rosenweig model for ferrofluid flow has been considered resorting to an unusual form of the magnitude of the magnetic field. For the evaluation of surface roughness the stochastic model of Christensen and Tonder has been adopted. The concerned stochastically averaged Reynolds type equation is solved to obtain the pressure distribution which results in the calculation of load carrying capacity. The results establish that the positive effect of magnetization adds to the positive effect of longitudinal surface roughness under restricted circumstances. However, for an overall improved performance the bearing deformation must be addressed carefully as it has a significant effect on the squeeze film behavior. Besides, this article offers an additional degree of freedom through the magnitude of the magnetic field for designing the bearing system.

2019 ◽  
Vol 71 (3) ◽  
pp. 357-365 ◽  
Author(s):  
Pentyala Srinivasa Rao ◽  
Amit Kumar Rahul

Purpose This paper aims to investigate the effect of surface roughness (radial and azimuthal) and viscosity variation on a squeeze film of a conical bearing with a non-Newtonian lubricant by using Rabinowitsch fluid model. Design/methodology/approach The main objective is to determine the stochastic nonlinear modified Reynolds equation for rough conical bearing. Later, first-order closed-form solutions are obtained using a small perturbation method and are numerically solved using the Gauss quadrature method. Findings The findings of this paper, numerical calculations, are analyzed for pressure, load carrying capacity and response time. The simulated results indicate that the influence of surface roughness increases the pressure, load carrying capacity and response time, whereas the viscosity variation factor decreases the pressure, load and response time. Originality/value According to both types of surface roughness with viscosity variation, the performance of a squeeze film rough conical bearing was improved by using Rabinowitsch fluid model. As it is inevitable to consider viscosity variation for bearing designer, it leads to a long life period of conical bearing.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
G. M. Deheri ◽  
Sejal J. Patel

This investigation analyzes the performance of a magnetic fluid based squeeze film for a sphere in a rough spherical seat with slip velocity. The slip model of Beavers and Joseph has been deployed to study the effect of velocity slip while the stochastic model of Christensen and Tonder has been used to calculate the effect of surface roughness. The concerned statistically averaged Reynolds’ type equation is solved to derive the pressure distribution which results in the calculation of load carrying capacity. The results presented in graphical forms confirm that the adverse effect of slip velocity can be overcome to a large extent at least in the case of negatively skewed roughness. However, lower values of slip may be preferred for enhancing the performance characteristics of the bearing system. Besides, variance (−ve) provides a little support to improve the performance characteristics.


Author(s):  
P. L. Thakkar ◽  
H. C. Patel

The effect of surface roughness on characteristics of magnetic fluid based squeeze film between porous circular plates is hypothetically analysed. The pressure distribution is obtained by solving concern Reynolds type equation with suitable boundary conditions and the result is utilized to obtain load carrying capacity. It is concluded that the load carrying capacity increases with increasing magnetization, while load carrying capacity decreases due to the standard deviation. It is observed that the negatively skewed roughness and negative mean increase the load carrying capacity. It is also observed that the magnetic fluid lubricant improves the performance of a bearing system, thereby, suggesting that the performance of the bearing with magnetic fluid lubricant is better than the conventional lubricant.


2017 ◽  
Vol 72 (12) ◽  
pp. 1151-1158 ◽  
Author(s):  
P. S. Rao ◽  
Birendra Murmu ◽  
Santosh Agarwal

AbstractBased on the micropolar fluid models of Eringen and Christensen’s stochastic theories, the analysis of the effects of surface roughness and the squeeze film lubrication problems between conical bearings are presented. The concerned nondimensional Reynolds equation is solved with appropriate boundary conditions in dimensionless form to find the pressure distribution, which is then used to obtain the expression for load-carrying capacity, paving the way for the calculation of response time. Computed values of pressure, load capacity, and response time are displayed in graphical form. This investigation reveals that the bearing system admits an improved performance as compared with that of a bearing system working with a conventional lubricant. According to the results, the effects of transverse roughness provide an increase in the bearing characteristics as compared with the smooth bearing lubricated with micropolar fluid whereas the influences of longitudinal roughness yield a reversed trend. The quantifiable effects of rough surfaces and non-Newtonian fluids on bearing performances are more pronounced for the roughness and micropolar parameters.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Akbar Toloian ◽  
Maghsood Daliri ◽  
Nader Javani

The present study aims at investigating a couple stress ferrofluid lubricant effects on the performance of the squeezed film when a uniform external magnetic field is applied. For this purpose, Shliomis ferrohydrodynamic and couple stress fluid models are employed. The considered geometry is parallel triangular plates. The effects of couple stress, volume concentration, and Langevin parameters on squeeze film characteristics including time vs. height relationship and load-carrying capacity are investigated. According to the results, employing couple stress ferrofluid lubricant in the presence of the magnetic field leads to an increased performance of the squeeze film.


2015 ◽  
Vol 42 (1) ◽  
pp. 53-71
Author(s):  
Jimit Patel ◽  
G.M. Deheri

This paper analyzes the combined effect of slip velocity and transverse roughness on the performance of a Jenkins model based ferrofluid lubrication of a squeeze film in curved rough annular plates. The slip model of Beavers and Joseph has been invoked to evaluate the effect of slip velocity. In order to find the effect of surface roughness the stochastic averaging model of Christensen and Tonder has been used. The pressure distribution is obtained by solving the concerned stochastically averaged Reynolds type equation. The load carrying capacity is calculated. The graphical representations of the results indicate that the effect of transverse surface roughness is adverse in general, however, the situation is relatively better in the case of negatively skewed roughness. Further, Jenkins model based ferrofluid lubrication offers some measures in reducing the adverse effect of roughness when slip parameter is kept at reduced level with a suitable ratio of curvature parameters. Lastly, the positive effect of magnetization gets a boost due to the combined effect of variance (-ve) and negatively skewed roughness suitably choosing the aspect ratio.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jimit R. Patel ◽  
Gunamani Deheri

This paper aims to discuss the effect of slip velocity and surface roughness on the performance of Jenkins model based magnetic squeeze film in curved rough circular plates. The upper plate’s curvature parameter is governed by an exponential expression while a hyperbolic form describes the curvature of lower plates. The stochastic model of Christensen and Tonder has been adopted to study the effect of transverse surface roughness of the bearing surfaces. Beavers and Joseph’s slip model has been employed here. The associated Reynolds type equation is solved to obtain the pressure distribution culminating in the calculation of load carrying capacity. The computed results show that the Jenkins model modifies the performance of the bearing system as compared to Neuringer-Rosensweig model, but this model provides little support to the negatively skewed roughness for overcoming the adverse effect of standard deviation and slip velocity even if curvature parameters are suitably chosen. This study establishes that for any type of improvement in the performance characteristics the slip parameter is required to be reduced even if variance (−ve) occurs and suitable magnetic strength is in force.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Syeda Tasneem Fathima ◽  
N. B. Naduvinamani ◽  
J. Santhosh Kumar ◽  
B. N. Hanumagowda

The combined effect of surface roughness and magnetic field on the performance characteristic of the circular plates lubricated with conducting couplestress fluid (CCSF) has been studied. On the basis of the Christensen Stochastic model, the generalized stochastic Reynold’s equation is derived. Modified equations for the nondimensional pressure, load load-carrying capacity, and squeeze film time are derived. The results are presented both numerically and graphically and compared with conducting smooth surface case. It is observed that the surface roughness effects are more pronounced for couplestresses as compared to nonconducting Newtonian fluid (NCNF) in the presence of magnetic field.


2015 ◽  
Vol 813-814 ◽  
pp. 921-937
Author(s):  
P.S. Rao ◽  
Santosh Agarwal

This paper presents the theoretical study and analyzes the comparison of porous structures on the performance of a couple stress fluid based on rough slider bearing. The globular sphere model of Kozeny-Carman and Irmay’s capillary fissures model have been subjected to investigations. A more general form of surface roughness is mathematically modeled by a stochastic random variable with non-zero mean, variance and skewness. The stochastically averaged Reynolds type equation has been solved under suitable boundary conditions to obtain the pressure distribution in turn which gives the expression for the load carrying capacity, frictional force and coefficient of friction. The results are illustrated by graphical representations which show that the introduction of combined porous structure with couple stress fluid results in an enhanced load carrying capacity more in the case of Kozeny-Carman model as compared to Irmay’s model.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Nikhilkumar D. Abhangi ◽  
G. M. Deheri

An endeavour has been made to study and analyze the behaviour of a magnetic fluid-based squeeze film between curved transversely rough rotating circular plates when the curved upper plate lying along a surface determined by an exponential function approaches the curved lower plate along the surface governed by a secant function. A magnetic fluid is used as the lubricant in the presence of an external magnetic field oblique to the radial axis. The random roughness of the bearing surfaces is characterised by a stochastic random variable with nonzero mean, variance, and skewness. The associated nondimensional averaged Reynolds equation is solved with suitable boundary conditions in dimensionless form to obtain the pressure distribution, leading to the expression for the load carrying capacity. The results establish that the bearing system registers an enhanced performance as compared to that of the bearing system dealing with a conventional lubricant. This investigation proves that albeit the bearing suffers due to transverse surface roughness, there exist sufficient scopes for obtaining a relatively better performance in the case of negatively skewed roughness by properly choosing curvature parameters and the rotation ratio. It is appealing to note that the negative variance further enhances this positive effect.


Sign in / Sign up

Export Citation Format

Share Document