OPTIMAL PLANTING TIME OF THE BEST WHITE BEAN VARIETIES IN KORCA REGION

Author(s):  
M. Adrian
Keyword(s):  
Fruits ◽  
2005 ◽  
Vol 60 (6) ◽  
pp. 395-403 ◽  
Author(s):  
Rajbir Singh ◽  
Ram Roshan Sharma ◽  
Rajiv Kumar Jain

2017 ◽  
Vol 17 (1) ◽  
pp. 15-18
Author(s):  
Donnie Lalfakzuala Kawlni ◽  
Chhungpuii Khawlhring

Broccoli (Brassica oleracea var. italica), a popular vegetable crop, has one of the most exacting climatic and cultural requirements, which limit its commercial production to a few favored locations. A field experiment was conducted at Mizoram University, Tanhril, Mizoram during winter of 2013/2014 to find out the effect of time of sowing on plant performance and yield of broccoli. Six sowing time was done viz. 17 October (T1), 24 October (T2), 31 October (T3), 7 November (T4), 14 November (T5) and 21 November (T6) with plant spacing of 45cm x 45cm. Yield and yield contributing characters were significantly influenced by the planting time. Highest average weight of marketable curd per plant (199.20 g) was obtained from T2, whereas lowest average weight obtained from T6 (75 g). The influence of planting time also showed significant difference on the calculated yield (tonnes per hectare) of broccoli, in which T2 showed highest marketable yield of 9.83 t/ha.


Author(s):  
Cao Đăng Nguyên ◽  
Nguyễn Thị Cẩm Hạnh

Đã điều tra lectin của 6 giống đậu cô ve thấy rằng cả 6 giống đều có hoạt tính lectin trong đó giống đậu cove hạt trắng dạng bụi (white bean core bush type white seeds) có hoạt tính lectin mạnh nhất, đặc biệt đối với hồng cầu trâu, bò, lợn. Lectin của 6 giống này đều không có biểu hiện đặc hiệu nhóm máu. Lectin đậu cove hạt trắng dạng bụi hoạt động tốt nhất ở nhiệt độ 300C – 400C, pH 6,8 – 7,6. Các đường α-D-glucose, α-D-galactose, D-mannose, D-fructose, D-saccharide,  D-lactose, D-arabinose và D-manitose ở nồng độ 0,05 – 0,1 M có tác dụng kìm hãm hoạt tính của lectin đậu cove hạt trắng dạng bụi. Lectin này cũng bị kìm hãm bởi protein của một số huyết thanh người và động vật (trâu, bò, lợn). Đã tinh sạch lectin đậu cove hạt trắng dạng bụi có độ tinh sạch gấp khoảng 52 lần so với dịch thô ban đầu. Trên gel polyacrylamide thấy xuất hiện 5 band có khối lượng phân tử trong khoảng 30 – 97 kDa.


Author(s):  
Amber Bassett ◽  
Kelvin Kamfwa ◽  
Daniel Ambachew ◽  
Karen Cichy

Abstract Key message Cooked bean flavor and texture vary within and across 20 Andean seed types; SNPs are significantly associated with total flavor, beany, earthy, starchy, bitter, seed-coat perception, and cotyledon texture. Abstract Common dry beans are a nutritious food recognized as a staple globally, but their consumption is low in the USA. Improving bean flavor and texture through breeding has the potential to improve consumer acceptance and suitability for new end-use products. Little is known about genetic variability and inheritance of bean sensory characteristics. A total of 430 genotypes of the Andean Diversity Panel representing twenty seed types were grown in three locations, and cooked seeds were evaluated by a trained sensory panel for flavor and texture attribute intensities, including total flavor, beany, vegetative, earthy, starchy, sweet, bitter, seed-coat perception, and cotyledon texture. Extensive variation in sensory attributes was found across and within seed types. A set of genotypes was identified that exhibit extreme attribute intensities generally stable across all three environments. seed-coat perception and total flavor intensity had the highest broad-sense heritability (0.39 and 0.38, respectively), while earthy and vegetative intensities exhibited the lowest (0.14 and 0.15, respectively). Starchy and sweet flavors were positively correlated and highest in white bean genotypes according to principal component analysis. SNPs associated with total flavor intensity (six SNPs across three chromosomes), beany (five SNPs across four chromosomes), earthy (three SNPs across two chromosomes), starchy (one SNP), bitter (one SNP), seed-coat perception (three SNPs across two chromosomes), and cotyledon texture (two SNPs across two chromosomes) were detected. These findings lay a foundation for incorporating flavor and texture in breeding programs for the development of new varieties that entice growers, consumers, and product developers alike.


2009 ◽  
Vol 8 (1) ◽  
Author(s):  
Jay K Udani ◽  
Betsy B Singh ◽  
Marilyn L Barrett ◽  
Harry G Preuss

2008 ◽  
Vol 7 (11) ◽  
pp. 1655-1661 ◽  
Author(s):  
Tayyar Şemun ◽  
Ouml Egesel Cem ◽  
M Guuml l Kemal ◽  
Turhan Hakan

Plants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 293 ◽  
Author(s):  
Carmine Amalfitano ◽  
Nadezhda A. Golubkina ◽  
Laura Del Vacchio ◽  
Giuseppe Russo ◽  
Mario Cannoniero ◽  
...  

Research was carried out on onion landrace (Ramata di Montoro) for seed production in southern Italy, with the aim to evaluate the effects on yield and quality of four bulb planting times in factorial combination with four densities, using a split plot design with three replicates. The number of flower stalks per plant, their height and diameter, and the inflorescence diameter decreased with the bulb planting delay and density increase. The highest plant leaf area and LAI (leaf area index), seed yield, number, and mean weight were recorded with the earliest planting time, with the lowest bulb density eliciting the highest plant leaf area but the lowest LAI and seed yield per hectare. The ratio between seeds and inflorescence weight, and seed germinability, decreased with the planting delay and density increase. Seed oil, protein, and antioxidant content (polyphenols and selenium) were highest with the last crop cycle. The polyunsaturated fatty acids, predominant in oil, increased with planting time delay, whereas the monounsaturated fatty acids decreased. Linoleic, oleic, and palmitic acid prevailed among polyunsaturated, monounsaturated, and saturated fatty acids, respectively. Planting from 20 December to 10 January with 3.3 cold-stored bulbs per m2 was the most effective combination in terms of seed yield per hectare, whereas seed oil content and quality were the best, with the last crop cycle starting on 21 February, independent of bulb density.


Sign in / Sign up

Export Citation Format

Share Document