scholarly journals RAY-BINNING ANGLE STACK DOMAIN IN ENHANCING THE ROBUSTNESS OF CONVERTED-WAVE SEISMIC JOINT INVERSION

2020 ◽  
Vol 41 (3) ◽  
pp. 117-124
Author(s):  
Wahyu Triyoso ◽  
Madaniya Oktariena ◽  
Lucky Kriski Muhtar

Converted-Wave Seismic has been proven as imaging alternative in aiding conventional seismic data when passing through gas cloud accumulation. However, asymmetrical approximation effect during Converted-Wave Seismic binning still remains in offset domain. PS-Reflection events in offset-domain are mapped using common-ray re-sorting technique by implementing the basic Snells Law of Mode Conversion. This produces an Angle Profile correspondent with the PP incident angle. Re-sorting the angle of converted-wave ray path to the PP-Wave propagation within the common imaging point, the Converted-Wave seismic would share similar angle range. Thus, improving the match in PP to PS event as data input preparation for Joint Inversion. Grouping the angle based on AVA Analysis, followed by stacking the Angle Profile into Common-Ray Partial Angle Stack, had proven to eliminate the fault shadow sagging zone and gas absorption illumination area in Converted-Wave Seismic. The final result of PP-Seismic imaging is more coherent with the Converted-Wave Seismic, in term of event alignment and amplitude character. This result lead to more robust PP-PS Joint Inversion, as the coherency between input data is an important key in simultaneous process. The comparison on derived Vp/Vs shows better improvements of subsurface imaging, especially in the near-surface gas masking area of conventional seismic.

2015 ◽  
Author(s):  
Tongju Gong* ◽  
Miao Liu ◽  
Yiming Wang ◽  
Zhiwei Zhu ◽  
Baoqing Zhang

Author(s):  
P.S Cally

Local helioseismology seeks to probe the near surface regions of the Sun, and in particular of active regions. These are distinguished by their strong magnetic fields, yet current local techniques do not take proper account of this. Here, we first derive appropriate gravito-magneto-acoustic dispersion relations, and then use these to examine how acoustic rays entering regions of strong field split into fast and slow components, and the subsequent fates of each. Specifically, two types of transmission point, where wave energy can transfer from the fast to slow branch (or vice versa) are identified; one close to the equipartition level where the sound and Alfvén speeds coincide, and one higher up near the acoustic cutoff turning point. This second type only exists for rays of low frequency or low l though. In accord with recent studies of fast-to-slow mode conversion from the perspective of p-modes, magnetic field inclination is found to have significant consequences for wave splitting.


First Break ◽  
2010 ◽  
Vol 28 (2) ◽  
Author(s):  
D. Colombo ◽  
M. Mantovani ◽  
M. Sfolciaghi ◽  
P. van Mastrigt ◽  
A. Al-Dulaijan ◽  
...  

2002 ◽  
Vol 42 (6) ◽  
pp. 665 ◽  
Author(s):  
H. A. Cleugh

While there has been considerable research into airflow around windbreaks, the interaction of this airflow with the exchanges of heat and water vapour has received far less attention. Yet, the effects of windbreaks on microclimates, water use and agricultural productivity depend, in part, on this interaction. A field and wind tunnel experimental program was conducted to quantify the effects of windbreaks on microclimates and evaporation fluxes. This paper describes the field measurements, which were conducted over a 6-week period at a tree windbreak site located in undulating terrain in south-east Australia. The expected features of airflow around porous windbreaks were observed despite the less than ideal nature of the site. As predicted from theory, the air temperature and humidity were elevated, by day, in the quiet zone and the location of the peak increase in temperature and humidity coincided with the location of the minimum wind speed. However, this increase in temperature and humidity was small in size and restricted to the zone within 10 windbreak heights (H) of the windbreak. This pattern contrasts with that for the near surface wind speeds, which were reduced by up to 80% in a sheltered zone that extended from 5 H upwind to over 25 H downwind of the windbreak. Similar differences were found between the turbulent scalar (heat, water vapour) and velocity terms. While both are reduced in the quiet zone, the turbulent scalar terms near the surface were substantially enhanced at the location where the wake zone begins. Here the mean wind speed is reduced by 50% and the turbulent velocity terms return to their upwind values. Wind speed reductions varied linearly with [cos (90 – α)], where α is the incident angle of the wind, for sites located 6 H downwind. This means that the spatial pattern of wind speed reduction applies to all wind directions, provided that distance downwind is expressed in terms of streamwise distance. However, shelter in the near-break region is slightly increased as the wind blows more obliquely towards the windbreak. The atmospheric demand in the quiet zone was reduced when the humidity of the upwind air was low. In such conditions, windbreaks can 'protect' growing crops from the impact of dry air with high atmospheric demand. The corollary is that in humid conditions, the atmospheric demand in the quiet zone can be increased as a result of shelter.


Author(s):  
Maryam Safarshahi ◽  
Igor B. Morozov

ABSTRACT Empirical models of geometrical-, Q-, t-star, and kappa-type attenuation of seismic waves and ground-motion prediction equations (GMPEs) are viewed as cases of a common empirical standard model describing variation of wave amplitudes with time and frequency. Compared with existing parametric and nonparametric approaches, several new features are included in this model: (1) flexible empirical parameterization with possible nonmonotonous time or distance dependencies; (2) joint inversion for time or distance and frequency dependencies, source spectra, site responses, kappas, and Q; (3) additional constraints removing spurious correlations of model parameters and data residuals with source–receiver distances and frequencies; (4) possible kappa terms for sources as well as for receivers; (5) orientation-independent horizontal- and three-component amplitudes; and (6) adaptive filtering to reduce noise effects. The approach is applied to local and regional S-wave amplitudes in southeastern Iran. Comparisons with previous studies show that conventional attenuation models often contain method-specific biases caused by limited parameterizations of frequency-independent amplitude decays and assumptions about the models, such as smoothness of amplitude variations. Without such assumptions, the frequency-independent spreading of S waves is much faster than inferred by conventional modeling. For example, transverse-component amplitudes decrease with travel time t as about t−1.8 at distances closer than 90 km and as t−2.5 beyond 115 km. The rapid amplitude decay at larger distances could be caused by scattering within the near surface. From about 90 to 115 km distances, the amplitude increases by a factor of about 3, which could be due to reflections from the Moho and within the crust. With more accurate geometrical-spreading and kappa models, the Q factor for the study area is frequency independent and exceeds 2000. The frequency-independent and Q-type attenuation for vertical-component and multicomponent amplitudes is somewhat weaker than for the horizontal components. These observations appear to be general and likely apply to other areas.


Geophysics ◽  
1993 ◽  
Vol 58 (5) ◽  
pp. 645-652 ◽  
Author(s):  
Derek J. Woodward

Although draped magnetic surveys contain more information about the magnetization of the rocks near the surface of the earth than surveys at constant elevation, allowance for the effects of the terrain is critical for their correct interpretation. A new method for calculating the magnetic effect of the topography from a digital terrain model by integrating analytically in the vertical direction and then numerically in the horizontal plane is presented. This method lends itself to the calculation of anomalies when the magnetization of the rocks varies with position and thus is well suited to the inversion of draped aeromagnetic surveys to obtain the apparent magnetization of the surficial rocks. This inversion is achieved by repeated use of an approximate inverse function in the form of a two‐dimensional (2-D) filter that is applied to gridded data. An example, using draped magnetic data collected over White Island, an active volcanic island of high relief, shows that although the anomaly pattern is dominated by topographic effects, the distribution of near‐surface magnetic bodies can be determined by a joint inversion of the data and the topography. One of the highly magnetized areas of White Island is interestingly in the vicinity of the active crater, with another near the inner wall of the caldera where there are numerous fumaroles. It may be expected that the higher temperatures in these areas would reduce the magnetization. However, it appears that an explanation for the higher magnetization can be found in the stability field of the mineral magnetite.


2020 ◽  
Vol 39 (5) ◽  
pp. 354-356
Author(s):  
Abdulaziz Saad ◽  
Moosa Al-Jahdhami

Despite technological and computational advances in geophysical imaging, near-surface geophysics continues to pose significant challenges in modeling and imaging the subsurface. Geoscientists from around the world attended the first and second editions of the SEG/DGS Near-surface Modeling and Imaging Workshop in 2014 and 2016 to address these challenges. A range of near-surface disciplines were represented from academia and industry, covering aspects of engineering and hydrocarbon exploration. The previous workshops explored emerging and underdeveloped techniques, including deep learning (machine learning), nonseismic methods, full-waveform inversion (FWI), and joint inversion. The necessity to further understand guided waves, anisotropy, velocity inversion, and the creation of an inclusive near-surface model was identified. The previous editions led to a greater understanding of the importance of knowledge sharing among various disciplines in modeling and imaging of the near surface.


Geophysics ◽  
2003 ◽  
Vol 68 (1) ◽  
pp. 40-57 ◽  
Author(s):  
Robert R. Stewart ◽  
James E. Gaiser ◽  
R. James Brown ◽  
Don C. Lawton

Converted seismic waves (specifically, downgoing P‐waves that convert on reflection to upcoming S‐waves are increasingly being used to explore for subsurface targets. Rapid advancements in both land and marine multicomponent acquisition and processing techniques have led to numerous applications for P‐S surveys. Uses that have arisen include structural imaging (e.g., “seeing” through gas‐bearing sediments, improved fault definition, enhanced near‐surface resolution), lithologic estimation (e.g., sand versus shale content, porosity), anisotropy analysis (e.g., fracture density and orientation), subsurface fluid description, and reservoir monitoring. Further applications of P‐S data and analysis of other more complicated converted modes are developing.


1996 ◽  
Vol 439 ◽  
Author(s):  
S. Müller ◽  
M. L. Jenkins ◽  
C. Abromeit ◽  
H. Wollenberger

AbstractStereo transmission electron microscopy has been used to characterise the distribution in depth of disordered zones and associated dislocation loops in the ordered alloys Ni3Al and Cu3Au after heavy ion irradiation, most extensively for Ni3Al irradiated with 50 keV Ta+ ions at a temperature of 573 K. The Cu3Au specimen was irradiated with 50 keV Ni+ ions at an incident angle of 45° at a temperature of 373 K. In Ni3Al the defect yield, i.e. the probability for a disordered zone to contain a loop was found to be strongly dependent on the depth of the zone in the foil, varying from about 0.7 for near-surface zones to about 0.2 in the bulk. The sizes and shapes of disordered zones were only weakly dependent on depth, except for a small population of zones very near the surface which were strongly elongated parallel to the incident ion beam. In Cu3Au the surface had a smaller but still significant effect on the defect yield. The dependence of the tranverse disordered zone diameter d on ion energy E for Ta+ irradiation of NiA was found to follow a relationship d = k1, E1/α with k, = 2.4 ± 0.4 and α = 3.3 ± 0.4. A similar relationship with the same value of α is valid for a wide variety of incident ion/target combinations found in the literature.


Sign in / Sign up

Export Citation Format

Share Document