Undersaturated Hydrocarbon Reservoir Waterflooding: A simulation Approach to Performance Assessment

2021 ◽  
Author(s):  
Adekunle Tirimisiyu Adeniyi ◽  
Miracle Imwonsa Osatemple ◽  
Abdulwahab Giwa

Abstract There are a good numbers of brown hydrocarbon reservoirs, with a substantial amount of bypassed oil. These reservoirs are said to be brown, because a huge chunk of its recoverable oil have been produced. Since a significant number of prominent oil fields are matured and the number of new discoveries is declining, it is imperative to assess performances of waterflooding in such reservoirs; taking an undersaturated reservoir as a case study. It should be recalled that Waterflooding is widely accepted and used as a means of secondary oil recovery method, sometimes after depletion of primary energy sources. The effects of permeability distribution on flood performances is of concerns in this study. The presence of high permeability streaks could lead to an early water breakthrough at the producers, thus reducing the sweep efficiency in the field. A solution approach adopted in this study was reserve water injection. A reverse approach because, a producing well is converted to water injector while water injector well is converted to oil producing well. This optimization method was applied to a waterflood process carried out on a reservoir field developed by a two - spot recovery design in the Niger Delta area of Nigeria that is being used as a case study. Simulation runs were carried out with a commercial reservoir oil simulator. The result showed an increase in oil production with a significant reduction in water-cut. The Net Present Value, NPV, of the project was re-evaluated with present oil production. The results of the waterflood optimization revealed that an increase in the net present value of up to 20% and an increase in cumulative production of up to 27% from the base case was achieved. The cost of produced water treatment for re-injection and rated higher water pump had little impact on the overall project economy. Therefore, it can conclude that changes in well status in wells status in an heterogenous hydrocarbon reservoir will increase oil production.

2021 ◽  
Author(s):  
Miracle Imwonsa Osatemple ◽  
Adekunle Tirimisiyu Adeniyi ◽  
Abdulwaha Giwa

Abstract In order to properly meet up with the ever-increasing demand for petroleum products worldwide, it has become increasingly necessary to produce oil and gas fields more economically and efficiently. Waterflooding is currently the most widely used secondary recovery method to improve oil recovery after primary depletion. A crucial component required to conduct an efficient waterflooding operation is an optimal production setting, most especially with respect to the amount of water involved. This research work has been carried out to develop a model that can be used to maximize oil recovery and minimize water production with the least amount and number of waterflood variables in order to minimize the secondary recovery investment cost. The gradient-based approach to optimize the production and net present value (NPV) from a waterflood reservoir using the flow rates or bottom hole pressures of the production wells as the controlling factors with the use of smart well technology was applied. In this approach, a variant of the optimal switching time technique was used in the optimization process to equalize the arrival times of the waterfront at multiple producers, thereby increasing the cumulative oil production. The optimization procedure involved maximizing the objective function (NPV) by adjusting a set of manipulated variables (flow rates). The optimal pressure profile of the waterflood scenario that gave the maximum NPV was obtained as the solution to the waterflood problem. The proposed optimization methodology was applied to a waterflood process carried out on a reservoir field developed by a five-spot recovery design in the Niger Delta area of Nigeria, which was used as a case study. The forward run was carried out with a commercial reservoir oil simulator. The results of the waterflood optimization revealed that an increase in the net present value of up to 9.7% and an increase in cumulative production of up to 30% from the base case could be achieved.


2021 ◽  
Author(s):  
Anna Chernova ◽  
Andrey Afanasyev ◽  
Anna Andreeva

<p>We investigate the influence of the microscopic displacement processes on optimal gas flooding strategies. We couple a 1-D compositional reservoir model with an economic model of the flooding to assess profitability of the strategies. In general, we aim at the net present value maximisation, although the oil recovery and CO<sub>2 </sub>storage efficiencies are also estimated. Under certain assumptions, we reduce the number of parameters controlling selection of optimal strategy to just a few dimensionless quantities characterising both physical and economic processes. We show that the production life of oil fields should not be fixed in optimisation studies, especially at low oil prices. A significantly larger net present value can be achieved by varying the reservoir lifetime in addition to the injection rates and volumes and other well controls. Herewith, the optimal strategy can differ from that in the case of a presumed production time. We conclude that waterflooding is the optimal recovery method if the injection rate is low, whereas gas (WAG) flooding applied as a primary method and followed by waterflooding is most optimal for large injection rates. Gas flooding applied as the tertiary recovery method is most optimal for an intermediate range of the rates. In the latter case, gas injection should begin much earlier than water breaks through to producing wells. Finally, we investigate how oil price influences the range of parameters suitable for gas injection.</p><p>The authors acknowledge funding from the Russian Foundation for Basic Research under grant # 20-31-80009.</p>


2021 ◽  
Author(s):  
Tsubasa Onishi ◽  
Hongquan Chen ◽  
Jiang Xie ◽  
Shusei Tanaka ◽  
Dongjae Kam ◽  
...  

Abstract Streamline-based methods have proven to be effective for various subsurface flow and transport modeling problems. However, the applications are limited in dual-porosity and dual-permeability (DPDK) system due to the difficulty in describing interactions between matrix and fracture during streamline tracing. In this work, we present a robust streamline tracing algorithm for DPDK models and apply the new algorithm to rate allocation optimization in a waterflood reservoir. In the proposed method, streamlines are traced in both fracture and matrix domains. The inter-fluxes between fracture and matrix are described by switching streamlines from one domain to another using a probability computed based on the inter-fluxes. The approach is fundamentally similar to the existing streamline tracing technique and can be utilized in streamline-assisted applications, such as flow diagnostics, history matching, and production optimization. The proposed method is benchmarked with a finite-volume based approach where grid-based time-of-flight was obtained by solving the stationary transport equation. We first validated our method using simple examples. Visual time-of-flight comparisons as well as tracer concentration and allocation factors at wells show good agreement. Next, we applied the proposed method to field scale models to demonstrate the robustness. The results show that our method offers reduced numerical artifacts and better represents reservoir heterogeneity and well connectivity with sub-grid resolutions. The proposed method is then used for rate allocation optimization in DPDK models. A streamline-based gradient free algorithm is used to optimize net present value by adjusting both injection and production well rates under operational constraints. The results show that the optimized schedule offers significant improvement in recovery factor, net present value, and sweep efficiency compared to the base scenario using equal rate injection and production. The optimization algorithm is computationally efficient as it requires only a few forward reservoir simulations.


2021 ◽  
Author(s):  
Hung Vo Thanh ◽  
Kang-Kun Lee

Abstract Basement formation is known as the unique reservoir in the world. The fractured basement reservoir was contributed a large amount of oil and gas for Vietnam petroleum industry. However, the geological modelling and optimization of oil production is still a challenge for fractured basement reservoirs. Thus, this study aims to introduce the efficient workflow construction reservoir models for proposing the field development plan in a fractured crystalline reservoir. First, the Halo method was adapted for building the petrophysical model. Then, Drill stem history matching is conducted for adjusting the simulation results and pressure measurement. Next, the history-matched models are used to conduct the simulation scenarios to predict future reservoir performance. The possible potential design has four producers and three injectors in the fracture reservoir system. The field prediction results indicate that this scenario increases approximately 8 % oil recovery factor compared to the natural depletion production. This finding suggests that a suitable field development plan is necessary to improve sweep efficiency in the fractured oil formation. The critical contribution of this research is the proposed modelling and simulation with less data for the field development plan in fractured crystalline reservoir. This research's modelling and simulation findings provide a new solution for optimizing oil production that can be applied in Vietnam and other reservoirs in the world.


2000 ◽  
Vol 30 (11) ◽  
pp. 1817-1823 ◽  
Author(s):  
Karin Öhman

Harvest activities tend often to create landscapes where the old forest is fragmented into isolated patches that provide marginal conditions for species that inhabit forest interiors. This paper presents a long-range planning model designed to maximize the net present value and to create continuous patches of old forest. In this model, the spatial structure of old forest is controlled by core area and edge habitats. Core area is defined as the area of old forest that is free of edge effects from surrounding habitats. The core area requirement is set to a fixed value for each of a number of time periods, whereas the area of edge habitats, which should be as small as possible, is weighted against the net present value. The model is applied in a case study to an actual landscape consisting of 755 stands of forest in northern Sweden and solved using simulated annealing. The results show that distinct continuous patches of old forest are created when both a core area requirement and consideration of the amount of edge habitats are included in the problem formulation. The cost of creating continuous areas of old forest was found to be significant.


2021 ◽  
Author(s):  
Lijuan Huang ◽  
Zongfa Li ◽  
Shaoran Ren ◽  
Yanming Liu

Abstract The technology of air injection has been widely used in the second and tertiary recovery in oilfields. However, due to the injected air and natural gas will explode, the safety of the gas injection technology has attracted much attention. Gravity assisted oxygen-reduced air flooding is a new method that eliminates explosion risks and improves oil recovery in large-dip oil reservoirs or thick oil layers. The explosion limit data of different components of natural gas under high pressure were obtained through explosion experiments, which verified the suppression effect of oxygen-reduced air on explosions. The influence of natural gas composition and concentration on explosion limits was also investigated. In addition, a rotatable displacement device was used to study the feasibility of gravity assisted oxygen-reduced air injection for improving the heavy oil reservoirs recovery. Under pressure and temperature conditions of 20MPa and 371K, the sand-filled gravity flooding experiments with different dip angles were carried out using oxygen-reduced air with an oxygen content of 8%. The results show that with the increase of the reservoir dip, the pore volume of the injected fluid at the gas channeling point, the efficient development time of gas injection, and the final displacement efficiency of gas injection development all increase through gravity stabilization caused by gravity differentiation. In the presence of a dip angle, the cumulative oil production before the gas breakthrough point exceeded 80% of the oil production during the entire production process, indicating that gravity assisted oxygen-reduced air flooding is an effective and safe improving oil recovery method. Finally, the explosion risk of each link of the air injection process is analyzed, and the high-risk area and the low-risk area are determined.


2001 ◽  
Vol 31 (11) ◽  
pp. 1992-2003 ◽  
Author(s):  
Daniel A Spring ◽  
Michael Bevers ◽  
John OS Kennedy ◽  
Dan Harley

An optimization model is developed to identify timing and placement strategies for the installation of nest boxes and the harvesting of timber to meet joint timber–wildlife objectives. Optimal management regimes are determined on the basis of their impacts on the local abundance of a threatened species and net present value (NPV) and are identified for a range of NPV levels to identify production possibility frontiers for abundance and NPV. We apply the model to a case study focusing on an area of commercially productive mountain ash (Eucalyptus regnans F. Muell.) forest in the Central Highlands region of Victoria, Australia. The species to be conserved is Leadbeater's possum (Gymnobelideus leadbeateri McCoy), which is locally limited by a scarcity of nesting hollows. The modeling is exploratory but indicates that nest boxes may offer a promising population recovery tool if consideration is taken of their placement and areal extent through time.


2014 ◽  
Vol 54 (9) ◽  
pp. 1248 ◽  
Author(s):  
C. K. M. Ho ◽  
T. Jackson ◽  
M. T. Harrison ◽  
R. J. Eckard

Ewes with the fecundity Booroola (FecB) gene produce more lambs per ewe on average than ewes without the gene and offers a potential way to decrease greenhouse gas emissions (net and per unit animal product) without reducing lamb production if the lambs can be reared to market weights. Using a case study farm in south-west Victoria, a biophysical modelling study has previously showed that increased ewe fecundity from 1 to 1.5 lambs per ewe increased production by 27% and reduced net farm emissions by 21% for the same long-term stocking rate. In this study, a whole-farm economic analysis was used to investigate the relative merit of the same case study farm, with high-fecundity ewes, compared with a baseline system that represented a typical prime lamb enterprise in the region. An additional system comprising ewes with high fecundity at a lower stocking rate than the case study farm was also examined. The analysis was undertaken to establish which farm systems represented the most economically efficient use of all the resources that are employed over a run of years, and involved estimating the net present value of annual profits earned by the farm in each scenario, taking into account the total value of capital used. The potential revenue from the sale of carbon credits through the Carbon Farming Initiative was also investigated. After accounting for the additional costs involved, increasing ewe fecundity resulted in an increase in annual whole-farm profit compared with the baseline system, but risk, considered as the variability in farm profit, also increased. Decreasing stocking rate for the high-fecundity system reduced annual operating profit and net present value at a 5% discount rate, but had less risk compared with the higher stocking rate system. While both systems that incorporated high-fecundity ewes reduced greenhouse gas emissions, revenue from the sale of carbon credits was small compared with revenue from the sale of lambs, wool and culled ewes. Despite this, and assuming the required increases in fertility and weaning rates could be achieved consistently on-farm, ewes with high fecundity may offer producers the opportunity to increase production and profit as well as decrease greenhouse gas emissions.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3860 ◽  
Author(s):  
Diego Manfre Jaimes ◽  
Ian D. Gates ◽  
Matthew Clarke

The amount of oil that is contained in the Canadian oil sands represent the third largest oil accumulation in the world. Approximately half of the daily oil production from the oil sands comes from mining processes and the other half is produced mostly using steam assisted gravity drainage (SAGD). This method is effective at reducing the viscosity of the oil. However, the generation of steam requires a significant amount of energy. Thus, there is an ongoing effort to reduce the energy needed to produce oil from the oil sands. In this article the intermittent injection of a solvent, along with steam, is investigated as a means of reducing the amount of energy required to extract oil from the Canadian oil sands. A simulation-based study examined the effect of the type of solvent, the cycles’ duration, the solvent concentration and the number of cycles. The simulations covered a time span of 10 years during which several different solvents (methane, ethane, propane, butane, pentane, hexane, and CO2) were injected under varying injection schedules. The solvents that were investigated are compounds that are likely to be readily available at a heavy oil production site. The solvent injection periods ranged from six to 24 months in length. The results reveal that SAGD combined with intermittent injection of hexane resulted in the most significant improvement to the cumulative oil production and in the cumulative energy-oil ratio (cEOR). Compared to SAGD without solvent injection, the cumulative oil production was increased by 45% and the cEOR was reduced by 23%. It was also seen that the performance of the proposed process is highly dependent on the resulting physical properties of the solvent-bitumen mixture. Finally, a simplified economic analysis also identified SAGD with intermittent hexane injection as the scheme that resulted in the highest net present value. Compared to SAGD without solvent injection, the intermittent injection of hexane led to an 85% increase in the net present value.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jinhyung Cho ◽  
Sung Soo Park ◽  
Moon Sik Jeong ◽  
Kun Sang Lee

The addition of LPG to the CO2stream leads to minimum miscible pressure (MMP) reduction that causes more oil swelling and interfacial tension reduction compared to CO2EOR, resulting in improved oil recovery. Numerical study based on compositional simulation has been performed to examine the injectivity efficiency and transport behavior of water-alternating CO2-LPG EOR. Based on oil, CO2, and LPG prices, optimum LPG concentration and composition were designed for different wettability conditions. Results from this study indicate how injected LPG mole fraction and butane content in LPG affect lowering of interfacial tension. Interfacial tension reduction by supplement of LPG components leads to miscible condition causing more enhanced oil recovery. The maximum enhancement of oil recovery for oil-wet reservoir is 50% which is greater than 22% for water-wet reservoir. According to the result of net present value (NPV) analysis at designated oil, CO2, propane, and butane prices, the optimal injected LPG mole fraction and composition exist for maximum NPV. At the case of maximum NPV for oil-wet reservoir, the LPG fraction is about 25% in which compositions of propane and butane are 37% and 63%, respectively. For water-wet reservoir, the LPG fraction is 20% and compositions of propane and butane are 0% and 100%.


Sign in / Sign up

Export Citation Format

Share Document