scholarly journals Concurrent design of a lower limb rehabilitation mechanism

Enfoque UTE ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 57-68
Author(s):  
José Saúl Muñoz Reina ◽  
Miguel Gabriel Villarreal Cervantes ◽  
Leonel German Corona Ramirez ◽  
Robero Castro Medina

The rehabilitation given by robotic systems is a choice for minimizing the recovery time of a patient and boost their muscular and skeletal capacity on a limb damaged. However, the high cost of these systems limits patients to receive these kind of treatments. The systems of one degree of freedom are a low cost alternative to health care and rehab at home. In this paper, the structural design of an 8-link mechanism for the rehabilitation of lower limbs is performed, based on the approach and solution of an optimization problem in which certain objectives are met, such as dimensional synthesis, and the minimizing of torque to make control easier.

Author(s):  
Seanglidet Yean ◽  
Bu-Sung Lee ◽  
Chai Kiat Yeo

Ageing causes loss of muscle strength, especially on the lower limbs, resulting in higher risk to injuries during functional activities. The path to recovery is through physiotherapy and adopt customized rehabilitation exercise to assist the patients. Hence, lowering the risk of incorrect exercise at home involves the use of biofeedback for physical rehabilitation patients and quantitative reports for clinical physiotherapy. This research topic has garnered much attention in recent years owing to the fast ageing population and the limited number of clinical experts. In this paper, the authors survey the existing works in exercise assessment and state identification. The evaluation results in the accuracy of 95.83% average classifying exercise motion state using the proposed raw signal. It confirmed that raw signals have more impact than using sensor-fused Euler and joint angles in the state identification prediction model.


2021 ◽  
pp. 1-44
Author(s):  
Chennan Yu ◽  
Jun Ye ◽  
Jiangming Jia ◽  
Xiong Zhao ◽  
Zhiwei Chen ◽  
...  

Abstract A foot-driven rehabilitation mechanism is suitable for home healthcare due to its advantages of simplicity, effectiveness, small size, and low price. However, most of the existing studies on lower limb rehabilitation movement only consider the trajectory of the ankle joint and ignore the influence of its posture angle, which makes it difficult to ensure the rotation requirements of the ankle joint and achieve a better rehabilitation effect. Aiming at the shortcomings of the current research, this paper proposes a new single degree-of-freedom (DOF) configuration that uses a noncircular gear train to constrain the three revolute joints (3R) open-chain linkage and expounds its dimensional synthesis method. Then, a parameter optimization model of the mechanism is established, and the genetic algorithm is used to optimize the mechanism parameters. According to the eight groups of key poses and position points of the ankle joint and the toe, the different configurations of the rehabilitation mechanism are synthesized and compared, and it is concluded that the newly proposed 3R open-chain noncircular gear-linkage mechanism exhibits better performance. Finally, combined with the requirements of rehabilitation training, a lower limb rehabilitation training device is designed based on this new configuration, and a prototype is developed and tested. The test results show that the device can meet the requirements of the key position points and posture angles of the ankle joint and the toe and verify the correctness of the proposed dimensional synthesis and optimization methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jiancheng (Charles) Ji ◽  
Yufeng Wang ◽  
Guoqing Zhang ◽  
Yuanyuan Lin ◽  
Guoxiang Wang

In response to the ever-increasing demand of lower limb rehabilitation, this paper presents a novel robot-assisted gait trainer (RGT) to assist the elderly and the pediatric patients with neurological impairments in the lower limb rehabilitation training (LLRT). The RGT provides three active degrees of freedom (DoF) to both legs that are used to implement the gait cycle in such a way that the natural gait is not significantly affected. The robot consists of (i) the partial body weight support (PBWS) system to assist patients in sit-to-stand transfer via the precision linear rail system and (ii) the bipedal end-effector (BE) to control the motions of lower limbs via two mechanical arms. The robot stands out for multiple modes of training and optimized functional design to improve the quality of life for those patients. To analyze the performance of the RGT, the kinematic and static models are established in this paper. After that, the reachable workspace and motion trajectory are analyzed to cover the motion requirements and implement natural gait cycle. The preliminary results demonstrate the usability of the robot.


Machines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 224
Author(s):  
Xusheng Wang ◽  
Yongfei Feng ◽  
Jiazhong Zhang ◽  
Yungui Li ◽  
Jianye Niu ◽  
...  

Carrying out the immediate rehabilitation interventional therapy will better improve the curative effect of rehabilitation therapy, after the condition of bedridden stroke patients becomes stable. A new lower limb rehabilitation training module, as a component of a synchronous rehabilitation robot for bedridden stroke patients’ upper and lower limbs, is proposed. It can electrically adjust the body shape of patients with a different weight and height. Firstly, the innovative mechanism design of the lower limb rehabilitation training module is studied. Then, the mechanism of the lower limb rehabilitation module is simplified and the geometric relationship of the human–machine linkage mechanism is deduced. Next, the trajectory planning and dynamic modeling of the human–machine linkage mechanism are carried out. Based on the analysis of the static moment safety protection of the human–machine linkage model, the motor driving force required in the rehabilitation process is calculated to achieve the purpose of rationalizing the rehabilitation movement of the patient’s lower limb. To reconstruct the patient’s motor functions, an active training control strategy based on the sandy soil model is proposed. Finally, the experimental platform of the proposed robot is constructed, and the preliminary physical experiment proves the feasibility of the lower limb rehabilitation component.


2018 ◽  
Vol 7 (2.34) ◽  
pp. 56 ◽  
Author(s):  
Syed Faiz Ahmed ◽  
M Kamran Joyo ◽  
Athar Ali ◽  
Abdul Malik M. Ali ◽  
Kushsairy A. Kadir ◽  
...  

Wearable devices such as exoskeletons are being opted frequently during rehabilitation processes for the post stroke recovery. Such devices are playing important role in the development of assistive rehabilitation robotic systems. In this paper three control strategies MPC and LQR and PID are introduced which were applied to knee joint of lower limb exoskeleton model for passive exercise. The two controls MPC and LQR are model based control which empowers them for stable responses. In this paper the analysis of robustness of control is done under the noisy and disturbance conditions. The results showed good performance of the exoskeleton model with the applied controls in the provided condition. In the future work the applied controls will be implemented on hardware.


2014 ◽  
Vol 602-605 ◽  
pp. 848-852
Author(s):  
Wen Long Wang ◽  
Ji Rong Wang

This paper describes the design of the gait mechanism of pedal lower limb rehabilitation robot based on people’s heel movement trajectory curve in the normal walking. It is established the kinematics mathematical model of a pedal lower limbs rehabilitation robot and the simplified three-dimensional model with Pro/e software, then it is simulated kinematics using ADAMS software. The simulation result is shown that this pedal lower limbs rehabilitation robot can achieve the expected rehabilitation exercise and run smoothly. Kinematics analysis and simulation of pedal rehabilitation robot is provided the necessary theoretical basis and parameters for the study of lower limb rehabilitation machinery.


2020 ◽  
Vol 62 (5) ◽  
pp. 492-496
Author(s):  
Ali Rıza Yıldız ◽  
H. Özkaya ◽  
M. Yıldız ◽  
S. Bureerat ◽  
B. S. Yıldız ◽  
...  

Abstract Due to harsh competitive conditions and the transition to new vehicles such as hybrid and full-electrical, the interest in the design of light and low-cost vehicles is increasing. In this paper, a recent metaheuristic procedure which is an equilibrium optimization algorithm (EOA) is used to solve a structural design optimization problem for a vehicle seat bracket to prove how the EOA can be used in solving industrial design problems. This paper is the first application of the EAO to real-world problems in the literature. The results strongly prove the capability of the EOA for designing optimum components in the automotive industry.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Iñaki Díaz ◽  
Jorge Juan Gil ◽  
Emilio Sánchez

This paper presents a survey of existing robotic systems for lower-limb rehabilitation. It is a general assumption that robotics will play an important role in therapy activities within rehabilitation treatment. In the last decade, the interest in the field has grown exponentially mainly due to the initial success of the early systems and the growing demand caused by increasing numbers of stroke patients and their associate rehabilitation costs. As a result, robot therapy systems have been developed worldwide for training of both the upper and lower extremities. This work reviews all current robotic systems to date for lower-limb rehabilitation, as well as main clinical tests performed with them, with the aim of showing a clear starting point in the field. It also remarks some challenges that current systems still have to meet in order to obtain a broad clinical and market acceptance.


Sign in / Sign up

Export Citation Format

Share Document