scholarly journals Anticipating Ocean Deoxygenation in the Maritime Continent of Southeast Asia

Author(s):  
Ita Wulandari ◽  
A'an J. Wahyudi ◽  
Karlina Triana

Oxygen plays an essential role in the biogeochemical process and ocean productivity, especially during the recent trend of ocean warming. However, deoxygenation as a consequence of climate change receives less attention than ocean acidification and warming. Therefore, understanding the deoxygenation as an effect of ocean warming is indispensable. The maritime continent waters of Southeast Asia are well known on marine biodiversity and geolocation unique features that are inevitably impacted by climate change. This condition will suffer more due to less oxygen on the marine water. This review focuses on observing oxygen depletion changes and hypoxia in the maritime continent area, its potency, effect, and recommendation on how to monitor deoxygenation. Based on previous research, the Bay of Bengal has been affected by oxygen depletion, and climate change increases this hypoxic area. In other locations, coastal hypoxic occurred seasonally. However, dominating big cities in the coast area increase the vulnerability of hypoxic zones such as in Sangga Besar River Estuary, Bolinao and Anda Coastal, Manila Bay, Jakarta Bay, Cambodian Waters, and Bengal Bay. Deoxygenation mitigation is an initial step in anticipating global climate change. The monitoring of the hypoxic area is needed to inform the threat of the deoxygenation on the maritime continent of SEA.


2019 ◽  
Vol 374 (1778) ◽  
pp. 20180550 ◽  
Author(s):  
Scott Bennett ◽  
Carlos M. Duarte ◽  
Núria Marbà ◽  
Thomas Wernberg

Accurately forecasting the response of global biota to warming is a fundamental challenge for ecology in the Anthropocene. Within-species variation in thermal sensitivity, caused by phenotypic plasticity and local adaptation of thermal limits, is often overlooked in assessments of species responses to warming. Despite this, implicit assumptions of thermal niche conservatism or adaptation and plasticity at the species level permeate the literature with potentially important implications for predictions of warming impacts at the population level. Here we review how these attributes interact with the spatial and temporal context of ocean warming to influence the vulnerability of marine organisms. We identify a broad spectrum of thermal sensitivities among marine organisms, particularly in central and cool-edge populations of species distributions. These are characterized by generally low sensitivity in organisms with conserved thermal niches, to high sensitivity for organisms with locally adapted thermal niches. Important differences in thermal sensitivity among marine taxa suggest that warming could adversely affect benthic primary producers sooner than less vulnerable higher trophic groups. Embracing the spatial, temporal and biological context of within-species variation in thermal physiology helps explain observed impacts of ocean warming and can improve forecasts of climate change vulnerability in marine systems. This article is part of the theme issue ‘Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen’.



2020 ◽  
Author(s):  
Gerald Lim ◽  
Aurel Moise ◽  
Raizan Rahmat ◽  
Bertrand Timbal

<p>Southeast Asia (SEA) is a rapidly developing and densely populated region that is home to over 600 million people. This, together with the region’s high sensitivity, exposure and low adaptive capacities, makes it particularly vulnerable to climate change and extremes such as floods, droughts and tropical cyclones. While the last decade saw some countries in SEA develop their own climate change projections, studies were largely uncoordinated and most countries still lack the capability to independently produce robust future climate information. Following a proposal from the World Meteorological Organisation (WMO) Regional Association (RA) V working group on climate services, the ASEAN Regional Climate Data, Analysis and Projections (ARCDAP) workshop series was conceived in 2017 to bridge these gaps in regional synergies. The ARCDAP series has been organised annually since 2018 by the ASEAN Specialised Meteorological Centre (hosted by Meteorological Service Singapore) with support from WMO through the Canada-funded Climate Risk and Early Warning Systems (Canada-CREWS) initiative.</p><p>This presentation will cover the activities and outcomes from the first two workshops, as well as the third which will be held in February 2020. The ARCDAP series has so far brought together representatives from ASEAN National Meteorological and Hydrological Services (NMHSs), climate scientists and end-users from policy-making and a variety of vulnerability and impact assessment (VIA) sectors, to discuss and identify best practices regarding the delivery of climate change information, data usage and management, advancing the science etc. Notable outputs include two comprehensive workshop reports and a significant regional contribution to the HadEX3 global land in-situ-based dataset of temperature and precipitation extremes, motivated by work done with the ClimPACT2 software.</p><p>The upcoming third workshop will endeavour to encourage the uptake of the latest ensemble of climate simulations from the Coupled Model Intercomparison Project (CMIP6) using CMIP-endorsed tools such as ESMValTool. This will address the need for ASEAN climate change practitioners to upgrade their knowledge of the latest global climate model database. It is anticipated that with continued support from WMO, the series will continue with the Fourth workshop targeting the assessment of downscaling experiments in 2021.</p>



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jessica Bleuel ◽  
Maria Grazia Pennino ◽  
Guilherme O. Longo

AbstractGlobal climate change is a major threat to reefs by increasing the frequency and severity of coral bleaching events over time, reducing coral cover and diversity. Ocean warming may cause shifts in coral communities by increasing temperatures above coral’s upper thermal limits in tropical regions, and by making extratropical regions (marginal reefs) more suitable and potential refugia. We used Bayesian models to project coral occurrence, cover and bleaching probabilities in Southwestern Atlantic and predicted how these probabilities will change under a high-emission scenario (RCP8.5). By overlapping these projections, we categorized areas that combine high probabilities of coral occurrence, cover and bleaching as vulnerability-hotspots. Current coral occurrence and cover probabilities were higher in the tropics (1°S–20°S) but both will decrease and shift to new suitable extratropical reefs (20°S–27°S; tropicalization) with ocean warming. Over 90% of the area present low and mild vulnerability, while the vulnerability-hotspots represent ~ 3% under current and future scenarios, but include the most biodiverse reef complex in South Atlantic (13°S–18°S; Abrolhos Bank). As bleaching probabilities increase with warming, the least vulnerable areas that could act as potential refugia are predicted to reduce by 50%. Predicting potential refugia and highly vulnerable areas can inform conservation actions to face climate change.



2016 ◽  
Vol 24 (7) ◽  
pp. 737-738 ◽  
Author(s):  
Jun Sun ◽  
◽  
◽  
◽  
◽  
...  


2018 ◽  
Vol 19 (5) ◽  
pp. 1960-1977
Author(s):  
AHMAD DWI SETYAWAN ◽  
JATNA SUPRIATNA ◽  
NISYAWATI NISYAWATI ◽  
SUTARNO SUTARNO ◽  
ILYAS NURSAMSI

Abstract. Setyawan AD, Supriatna J, Nisyawati, Sutarno, Sugiyarto, Nursamsi I. 2018. Predicting impacts of future climate change on the distribution of the widespread selaginellas (Selaginella ciliaris and S. plana) in Southeast Asia. Biodiversitas 19: 1960-1977. The current global climate is moving towards dangerous and unprecedented conditions that have been seen as a potentially devastating threat to the environment and all living things. Selaginella is a fern-allies that needs water as a medium for fertilization, hence its distribution is presumed to be affected by climate change. In Southeast Asia (SEA), there are two widely distributed selaginellas, namely Selaginella ciliaris and S. plana. S. ciliaris is a small herb (up to 4 cm), annual, abundant during the rainy season, and found in the middle-high plains, whereas S. plana is a stout large herb (up to 80 cm), perennial, and mainly found in the lowlands. The purpose of this study was to determine the potential niche distribution of S. ciliaris and S. plana under current climatic conditions, and to predict its future distribution under the impacts of climate change. We used Maxent software along with bioclimatic, edaphic, and UV radiation variables to model the potential niche distribution of those two selaginellas under current and future predictions climate conditions. We generated future predictions under four detailed bioclimatic scenarios (i.e., RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) over three times intervals (2030, 2050, 2080). The results showed that future climatic conditions in the SEA had been predicted to significantly disrupt the distribution of suitable habitat of S. ciliaris and S. plana, and alter their geographic distribution patterns. Although some areas were predicted to become suitable habitat in the early period of future climate change, the overall projections show adverse effects of future climate conditions on the suitable habitat distribution of S. ciliaris and S. plana, as estimated losses of suitable habitat will be higher than the gains.



Author(s):  
Song Yang ◽  
Renguang Wu ◽  
Maoqiu Jian ◽  
Jian Huang ◽  
Xiaoming Hu ◽  
...  


2011 ◽  
Vol 400 (1-2) ◽  
pp. 7-16 ◽  
Author(s):  
Thomas Wernberg ◽  
Bayden D. Russell ◽  
Pippa J. Moore ◽  
Scott D. Ling ◽  
Daniel A. Smale ◽  
...  


2014 ◽  
Vol 72 (2) ◽  
pp. 374-387 ◽  
Author(s):  
Patrick D. Lynch ◽  
Janet A. Nye ◽  
Jonathan A. Hare ◽  
Charles A. Stock ◽  
Michael A. Alexander ◽  
...  

Abstract The term river herring collectively refers to alewife (Alosa pseudoharengus) and blueback herring (A. aestivalis), two anadromous fishes distributed along the east coast of North America. Historically, river herring spawning migrations supported important fisheries, and their spawning runs continue to be of cultural significance to many coastal communities. Recently, substantial declines in spawning run size prompted a petition to consider river herring for listing under the Endangered Species Act (ESA). The ESA status review process requires an evaluation of a species’ response to multiple stressors, including climate change. For anadromous species that utilize a range of habitats throughout their life cycle, the response to a changing global climate is inherently complex and likely varies regionally. River herring occupy marine habitat for most of their lives, and we demonstrate that their relative abundance in the ocean has been increasing in recent years. We project potential effects of ocean warming along the US Atlantic coast on river herring in two seasons (spring and fall), and two future periods (2020–2060 and 2060–2100) by linking species distribution models to projected temperature changes from global climate models. Our analyses indicate that climate change will likely result in reductions in total suitable habitat across the study region, which will alter the marine distribution of river herring. We also project that density will likely decrease for both species in fall, but may increase in spring. Finally, we demonstrate that river herring may have increased sensitivity to climate change under a low abundance scenario. This result could be an important consideration for resource managers when planning for climate change because establishing effective conservation efforts in the near term may improve population resiliency and provide lasting benefits to river herring populations.





Sign in / Sign up

Export Citation Format

Share Document