high emission scenario
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 18)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Cara Nissen ◽  
Ralph Timmermann ◽  
Mario Hoppema ◽  
Judith Hauck

Abstract Antarctic Bottom Water formation, such as in the Weddell Sea, is an efficient vector for carbon sequestration on time scales of centuries. Possible changes in carbon sequestration under changing environmental conditions are unquantified to date, mainly due to difficulties in simulating the relevant processes on high-latitude continental shelves. Using a model setup including both ice-shelf cavities and oceanic carbon cycling, we demonstrate that by 2100, deep-ocean carbon accumulation in the southern Weddell Sea is abruptly attenuated to only 40% of the rate in the 1990s in a high-emission scenario, while still being 4-fold higher in the 2080s. Assessing deep-ocean carbon budgets and water mass transformations, we attribute this decline to an increased presence of Warm Deep Water on the southern Weddell Sea continental shelf, a 16% reduction in sea-ice formation, and a 79% increase in ice-shelf basal melt. Altogether, these changes lower the density and volume of newly formed bottom waters and reduce the associated carbon transport to the abyss.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1565
Author(s):  
Rajendra Khanal ◽  
Sulochan Dhungel ◽  
Simon C. Brewer ◽  
Michael E. Barber

Estimation of satellite-based remotely sensed evapotranspiration (ET) as consumptive use has been an integral part of agricultural water management. However, less attention has been given to future predictions of ET at watershed-scales especially since with a changing climate, there are additional challenges to planning and management of water resources. In this paper, we used nine years of total seasonal ET derived using a satellite-based remote sensing model, Mapping Evapotranspiration at Internalized Calibration (METRIC), to develop a Random Forest machine learning model to predict watershed-scale ET into the future. This statistical model used topographic and climate variables in agricultural areas of Lower Yakima, Washington and had a prediction accuracy of 88% for the region. This model was then used to predict ET into the future with changed climatic conditions under RCP4.5 and RCP8.5 emission scenarios expected by 2050s. The model result shows increases in seasonal ET across some areas of the watershed while decreases in other areas. On average, growing seasonal ET across the watershed was estimated to increase by +5.69% under the low emission scenario (RCP4.5) and +6.95% under the high emission scenario (RCP8.5).


2021 ◽  
Vol 16 (11) ◽  
pp. 114034
Author(s):  
Shukla Poddar ◽  
Jason P Evans ◽  
Merlinde Kay ◽  
Abhnil Prasad ◽  
Stephen Bremner

Abstract Solar photovoltaic (PV) energy is one of the fastest growing renewable energy sources globally. However, the dependency of PV generation on climatological factors such as the intensity of radiation, temperature, wind speed, cloud cover, etc can impact future power generation capacity. Considering the future large-scale deployment of PV systems, accurate climate information is essential for PV site selection, stable grid regulation, planning and energy output projections. In this study, the long-term changes in the future PV potential are estimated over Australia using regional climate projections for the near-future (2020–2039) and far-future (2060–2079) periods under a high emission scenario that projects 3.4 °C warming by 2100. The effects of projected changes in shortwave downwelling radiation, temperature and wind speed on the future performance of PV systems over Australia is also examined. Results indicate decline in the future PV potential over most of the continent due to reduced insolation and increased temperature. Northern coastal Australia experiences negligible increase in PV potential during the far future period due to increase in radiation and wind speed in that region. On further investigation, we find that the cell temperatures are projected to increase in the future under a high emission scenario (2.5 °C by 2079), resulting in increased degradation and risks of failure. The elevated cell temperatures significantly contribute to cell efficiency losses, that are expected to increase in the future (6–13 d yr−1 for multi-crystalline silicon cells) mostly around Western and central Australia indicating further reductions in PV power generation. Therefore, long-term PV power projections can help understand the variations in future power generation and identify regions where PV systems will be highly susceptible to losses in Australia.


2021 ◽  
Author(s):  
Lucy Yang ◽  
Nyree Zerega ◽  
Daniel E Horton

The number of people in food crisis around the world is increasing, exacerbated by the challenges of COVID-19 and a rapidly changing climate. Major crop yields are projected to decrease in low-latitude regions due to anthropogenic climate change, making tropical and sub-tropical food systems particularly vulnerable to climate shocks. Increased cultivation of breadfruit (Artocarpus altilis), often categorized as a neglected and underutilized species (NUS), has been suggested as an agricultural adaptation pathway for food insecure tropical and subtropical regions, due to its potential to enhance climate resilience and overall sustainability of low-latitude agricultural systems. To better understand breadfruit's cultivation suitability and geographic range in current and future climates, we employ a diverse set of observations and models to delineate the current climatically viable breadfruit range, and assess the climatically viable breadfruit range in the future (2061-2080) under stabilization and high emission scenarios. We find that the area of suitable breadfruit range within the tropics and subtropics is projected to decrease approximately 4.4% in the stabilization scenario and approximately 4.5% in the high emission scenario. In Southeast Asia and the Pacific Islands, yield quality and consistency show minimal decreases under the high emission scenario, with increases in total suitable area under both scenarios. In contrast, in Latin America and the Caribbean, the current range of breadfruit suitability is projected to contract approximately 10.1-11.5% (stabilization-high emission). Present and future model suitability outputs suggest that opportunities to successfully expand breadfruit cultivation over the next several decades exist in sub-Saharan Africa, where food insecurity is coincidentally high. However, in all regions, high emission scenario conditions reduce the overall consistency and quality of breadfruit yields compared to the stabilization scenario. Our results have the potential to inform global food security adaptation planning and highlight breadfruit as an ideal NUS to incorporate in food security adaptation strategies in a changing climate.


2021 ◽  
Author(s):  
Yu Shi ◽  
Yajie Zhang ◽  
Bingyan Wu ◽  
Hao Shi ◽  
Linchao Li ◽  
...  

Abstract Adaption based on social resilience is proposed as effective measures to mitigate hunger and avoid disaster caused by climate change. But these have not been investigated comprehensively in climate-sensitive regions especially necessary-quantitative paths. North Korea (NK, undeveloped) and its neighbors (SK, South Korea, developed; China, developing) represent three economic levels that provide us with examples of how to examine climatic risk and quantify the contribution of social resilience to rice production. Our data-driven estimates show that climatic factors determined rice biomass changes in NK, while non-climatic factors dominated biomass changes in NK’s neighbors. If no action is taken, NK will face a higher climatic risk (with continuous high temperature heatwaves and precipitation extremes) by the 2080s with high emission scenario when rice biomass and production are expected to decrease by 20.2% and 14.4%, respectively, thereby potentially increasing hunger in NK. The contribution of social resilience to food production in the undeveloped region (15.2%) was far below the contribution observed in the developed and developing regions (83.0% and 86.1%, respectively). These findings highlight the importance of social resilience to mitigate the negative effects of climate change on food security and human hunger, and provide necessary-quantitative information.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fabio Benedetti ◽  
Meike Vogt ◽  
Urs Hofmann Elizondo ◽  
Damiano Righetti ◽  
Niklaus E. Zimmermann ◽  
...  

AbstractMarine phytoplankton and zooplankton form the basis of the ocean’s food-web, yet the impacts of climate change on their biodiversity are poorly understood. Here, we use an ensemble of species distribution models for a total of 336 phytoplankton and 524 zooplankton species to determine their present and future habitat suitability patterns. For the end of this century, under a high emission scenario, we find an overall increase in plankton species richness driven by ocean warming, and a poleward shift of the species’ distributions at a median speed of 35 km/decade. Phytoplankton species richness is projected to increase by more than 16% over most regions except for the Arctic Ocean. In contrast, zooplankton richness is projected to slightly decline in the tropics, but to increase strongly in temperate to subpolar latitudes. In these latitudes, nearly 40% of the phytoplankton and zooplankton assemblages are replaced by poleward shifting species. This implies that climate change threatens the contribution of plankton communities to plankton-mediated ecosystem services such as biological carbon sequestration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jessica Bleuel ◽  
Maria Grazia Pennino ◽  
Guilherme O. Longo

AbstractGlobal climate change is a major threat to reefs by increasing the frequency and severity of coral bleaching events over time, reducing coral cover and diversity. Ocean warming may cause shifts in coral communities by increasing temperatures above coral’s upper thermal limits in tropical regions, and by making extratropical regions (marginal reefs) more suitable and potential refugia. We used Bayesian models to project coral occurrence, cover and bleaching probabilities in Southwestern Atlantic and predicted how these probabilities will change under a high-emission scenario (RCP8.5). By overlapping these projections, we categorized areas that combine high probabilities of coral occurrence, cover and bleaching as vulnerability-hotspots. Current coral occurrence and cover probabilities were higher in the tropics (1°S–20°S) but both will decrease and shift to new suitable extratropical reefs (20°S–27°S; tropicalization) with ocean warming. Over 90% of the area present low and mild vulnerability, while the vulnerability-hotspots represent ~ 3% under current and future scenarios, but include the most biodiverse reef complex in South Atlantic (13°S–18°S; Abrolhos Bank). As bleaching probabilities increase with warming, the least vulnerable areas that could act as potential refugia are predicted to reduce by 50%. Predicting potential refugia and highly vulnerable areas can inform conservation actions to face climate change.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1541
Author(s):  
Tongxia Wang ◽  
Zhengyong Zhang ◽  
Lin Liu ◽  
Zhongqin Li ◽  
Puyu Wang ◽  
...  

Under the background of global climate change, the variation in the spatial distribution and ice volume of mountain glaciers have a profound influence on regional economic development and ecological security. The development of glaciers is like biological succession; when climate change approaches or exceeds the threshold of suitable conditions for glacier development, it will lead to changes in potential distribution pattern. Therefore, from the perspective of the "biological" characteristics of glaciers, it is a beneficial exploration and attempt in the field of glaciology to explore its potential distribution law with the help of the niche model. The maximum entropy model (MaxEnt) can explain the environmental conditions suitable for the survival of things by analyzing the mathematical characteristics and distribution laws of samples in space. According to glacier samples and the geographical environment data screened by correlation analysis and iterative calculation, the potential distribution pattern of Tianshan glaciers in China in reference years (1970–2000) was simulated by MaxEnt. This paper describes the contribution of geographical environmental factors to distribution of glaciers in Tianshan Mountains, quantifies the threshold range of factors affecting the suitable habitat of glaciers, and predicts the area variation and distribution pattern of glaciers under different climate scenarios (SSP1-2.6, SSP5-8.5) in the future (2040–2060, 2080–2100). The results show that the MaxEnt model has good adaptability to simulate the distribution of glaciers. The spatial heterogeneity of potential distribution of glaciers is caused by the spatio-temporal differences of hydrothermal combination and topographic conditions. Among the environmental variables, precipitation during the wettest month, altitude, annual mean temperature, and temperature seasonality have more significant effects on the potential distribution of glaciers. There is significant spatial heterogeneity in the potential distribution of glaciers in different watersheds, altitudes, and aspects. From the forecast results of glacier in various climatic scenarios in the future, about 18.16–27.62% of the total reference year glacier area are in an alternating change of melting and accumulation, among which few glaciers are increasing, but this has not changed the overall retreat trend of glaciers in the study area. Under the low emission scenario, the glacier area of the Tianshan Mountains in China decreased by 18.18% and 23.73% respectively in the middle and end of the 21st century compared with the reference years and decreased by 20.04% and 27.63%, respectively, under the high emission scenario, which showed that the extent of glacier retreat is more intense under the high emission scenario. Our study offers momentous theoretical value and practical significance for enriching and expanding the theories and analytical methods of the glacier change.


2021 ◽  
Vol 8 ◽  
Author(s):  
Hector Lobeto ◽  
Melisa Menendez ◽  
Iñigo J. Losada

Based on a novel approach, present-day and future spectral wind-wave conditions in a high-emission scenario from a seven-member wave climate projection ensemble are compared. The spectral analysis at the selected locations aids in understanding the propagation of swell projected changes from the generation areas across the ocean basins. For example, a projected increase in the energy from Southern Ocean swells can be observed in all ocean basins and both hemispheres, which is especially relevant in the west coast of North America due to the penetration of these swells beyond 30°N. Similarly, a consistent decrease in the energy of large northern Atlantic swells is noted close to the equator. This work provides evidence that assessments based on only integrated wave parameters (e.g., significant wave height and mean wave period) can mask information about the sign, magnitude, and robustness of the actual wave climate changes due to the offset of positive and negative variations within the spectrum, leading to a significant underestimation of the change associated with certain wave systems.


Sign in / Sign up

Export Citation Format

Share Document