scholarly journals Pengenalan Karakter Huruf Braille dengan Metode Convolutional Neural Network

2021 ◽  
Vol 6 (2) ◽  
pp. 20-26
Author(s):  
Muhammad Fahmi Herlambang ◽  
Asep Nana Hermana ◽  
Kurnia Ramadhan Putra

Karakter huruf Braille terdiri dari 6 titik yang dirancang sedemikian rupa sehingga menjadi sebuah sistem penulisan yang dapat digunakan untuk membantu tunanetra. Akan tetapi, membaca huruf Braille tidaklah mudah karena selain harus memahami huruf Braille tersebut juga dibutuhkan sensitivitas jari yang cukup agar dapat membaca huruf Braille. Adapun penelitian tentang pengenalan huruf Braille menggunakan teknologi kecerdasan buatan, salah satunya deep learning. Metode deep learning yang digunakan adalah Convolutional Neural Network (CNN). Metode CNN dapat digunakan dalam pengenalan wajah, analisis dokumen, klasifikasi gambar, dan sebagainya. Pada penelitian ini, metode CNN digunakan untuk pengenalan karakter huruf Braille. Sistem melakukan proses pengenalan karakter huruf braille per karakter dengan model yang sudah dilatih dengan dataset dengan 26 karakter. Hasil yang didapat mencapai tingkat akurasi 81.54% untuk citra karakter Braille yang diakuisisi dengan smartphone dengan kemiringan antara 0 hingga 4 derajat dan jarak 30cm dengan model training dengan learning rate 0.0001 dan optimizer Adam.

Author(s):  
Shelvi Nur Rahmawati ◽  
Eka Wahyu Hidayat ◽  
Husni Mubarok

Aksara Sunda merupakan salah satu aksara daerah Indonesia khususnya masyarakat Sunda. Seiring dengan perkembangan teknologi seperti sekarang ini, bahasa daerah pun semakin tergerus dari waktu kewaktu. Aksara Sunda pun mulai terlupakan, bahkan jarang digunakan oleh masyarakat Sunda dalam kehidupan sehari-hari serta kurangnya memahami Bahasa daerahnya sendiri. Oleh karena itu, perlu adanya pelestarian Bahasa daerah yang dikembangkan menyesuaikan perkembangan jaman agar bisa terus dikenal dan dilestarikan, salahsatunya dengan identifikasi aksara Sunda menggunakan metode Convolutional Neural Network (CNN). Convolutional Neural Network (CNN) adalah bagian dari deep learning yang biasanya digunakan dalam pengolahan data gambar. Hasil dari penelitian ini  menggunakan optimasi ADAM dengan penggunaan epoch 20, 50, 100 dan 500. Penggunaan epoch 500, learning rate 0.1 merupakan nilai tertinggi dengan akurasi 98.03%. Berdasarkan hasil data training dengan nilai epoch 100, learning rate 0.001 hasil akurasi sebesar 96.71% data training dan 92.02% data testing.


2018 ◽  
Vol 18 (01) ◽  
pp. 22-27 ◽  
Author(s):  
Royani Darma Nurfita ◽  
Gunawan Ariyanto

Sistem pengenalan sidik jari banyak digunakan dala bidang biometrik untuk berbagai keperluan pada beberapa tahun terakhir ini. Pengenalan sidik jari digunakan karena memiliki pola yang rumit yang dapat mengenali seseorang dan merupakan identitas setiap manusia. Sidik jari juga banyak digunakan sebagai verifikasi maupun identifikasi. Permasalahan yang dihadapi dalam penelitian ini adalah komputer sulit melakukan klasifikasi objek salah satunya pada sidikjari. Dalam penelitian ini penulismenggunakan deep learning yang menggunakan metode Convolutional Neural Network (CNN) untuk mengatasi masalah tersebut. CNN digunakan untuk melakukan proses pembelajaran mesin pada komputer. Tahapan pada CNN adalah input data, preprocessing, proses training. Implementasi CNN yang digunakan library tensorflow dengan menggunakan bahasa pemrograman python. Dataset yang digunakan bersumber dari sebuah website kompetisi verifikasi sidik jari pada tahun 2004 yang menggunakan sensor bertipe opticalsensor “V300” by crossMatch dan didalamnya terdapat 80 gambar sidik jari. Proses pelatihan menggunakan data yang berukuran 24x24 pixel dan melakukan pengujian dengan membandingkan jumlah epoch dan learning rate sehingga diketahui bahwa jika semakin besar jumlah epoch dan semakin kecil learning rate maka semakin baik tingkat akurasi pelatihan yang didapatkan. Pada penelitian ini tingkat akurasi pelatihan yang dicapai sebesar 100%


2021 ◽  
Vol 2 (1) ◽  
pp. 06-11
Author(s):  
Suriani Alamgunawan ◽  
Yosi Kristian

Convolutional Neural Network sebagai salah satu metode Deep Learning yang paling sering digunakan dalam klasifikasi, khususnya pada citra. Terkenal dengan kedalaman dan kemampuan dalam menentukan parameter sendiri, yang memungkinkan CNN mampu mengeksplor citra tanpa batas. Tujuan penelitian ini adalah untuk meneliti klasifikasi tekstur serat kayu pada citra mikroskopik veneer dengan CNN. Model CNN akan dibangun menggunakan MBConv dan arsitektur lapisan akan didesain menggunakan EfficientNet. Diharapkan  dapat tercapai tingkat akurasi yang tinggi dengan penggunaan jumlah parameter yang sedikit. Dalam penelitian ini akan mendesain empat model arsitektur CNN, yaitu model RGB tanpa contrast stretching, RGB dengan contrast stretching, Grayscale tanpa contrast stretching dan Grayscale dengan contrast stretching. Proses ujicoba akan mencakup proses pelatihan, validasi dan uji pada masing-masing input citra pada setiap model arsitektur. Dengan menggunakan penghitungan softmax sebagai penentu kelas klasifikasi. SGD optimizer digunakan sebagai optimization dengan learning rate 1e-1. Hasil penelitian akan dievaluasi dengan menghitung akurasi dan error dengan menggunakan metode F1-score. Penggunaan channel RGB tanpa contrast stretching sebagai citra input menunjukkan hasil uji coba yang terbaik.


2020 ◽  
pp. 004051752092860 ◽  
Author(s):  
Junfeng Jing ◽  
Zhen Wang ◽  
Matthias Rätsch ◽  
Huanhuan Zhang

Deep learning–based fabric defect detection methods have been widely investigated to improve production efficiency and product quality. Although deep learning–based methods have proved to be powerful tools for classification and segmentation, some key issues remain to be addressed when applied to real applications. Firstly, the actual fabric production conditions of factories necessitate higher real-time performance of methods. Moreover, fabric defects as abnormal samples are very rare compared with normal samples, which results in data imbalance. It makes model training based on deep learning challenging. To solve these problems, an extremely efficient convolutional neural network, Mobile-Unet, is proposed to achieve the end-to-end defect segmentation. The median frequency balancing loss function is used to overcome the challenge of sample imbalance. Additionally, Mobile-Unet introduces depth-wise separable convolution, which dramatically reduces the complexity cost and model size of the network. It comprises two parts: encoder and decoder. The MobileNetV2 feature extractor is used as the encoder, and then five deconvolution layers are added as the decoder. Finally, the softmax layer is used to generate the segmentation mask. The performance of the proposed model has been evaluated by public fabric datasets and self-built fabric datasets. In comparison with other methods, the experimental results demonstrate that segmentation accuracy and detection speed in the proposed method achieve state-of-the-art performance.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256500
Author(s):  
Maleika Heenaye-Mamode Khan ◽  
Nazmeen Boodoo-Jahangeer ◽  
Wasiimah Dullull ◽  
Shaista Nathire ◽  
Xiaohong Gao ◽  
...  

The real cause of breast cancer is very challenging to determine and therefore early detection of the disease is necessary for reducing the death rate due to risks of breast cancer. Early detection of cancer boosts increasing the survival chance up to 8%. Primarily, breast images emanating from mammograms, X-Rays or MRI are analyzed by radiologists to detect abnormalities. However, even experienced radiologists face problems in identifying features like micro-calcifications, lumps and masses, leading to high false positive and high false negative. Recent advancement in image processing and deep learning create some hopes in devising more enhanced applications that can be used for the early detection of breast cancer. In this work, we have developed a Deep Convolutional Neural Network (CNN) to segment and classify the various types of breast abnormalities, such as calcifications, masses, asymmetry and carcinomas, unlike existing research work, which mainly classified the cancer into benign and malignant, leading to improved disease management. Firstly, a transfer learning was carried out on our dataset using the pre-trained model ResNet50. Along similar lines, we have developed an enhanced deep learning model, in which learning rate is considered as one of the most important attributes while training the neural network. The learning rate is set adaptively in our proposed model based on changes in error curves during the learning process involved. The proposed deep learning model has achieved a performance of 88% in the classification of these four types of breast cancer abnormalities such as, masses, calcifications, carcinomas and asymmetry mammograms.


2019 ◽  
Author(s):  
Seoin Back ◽  
Junwoong Yoon ◽  
Nianhan Tian ◽  
Wen Zhong ◽  
Kevin Tran ◽  
...  

We present an application of deep-learning convolutional neural network of atomic surface structures using atomic and Voronoi polyhedra-based neighbor information to predict adsorbate binding energies for the application in catalysis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Young-Gon Kim ◽  
Sungchul Kim ◽  
Cristina Eunbee Cho ◽  
In Hye Song ◽  
Hee Jin Lee ◽  
...  

AbstractFast and accurate confirmation of metastasis on the frozen tissue section of intraoperative sentinel lymph node biopsy is an essential tool for critical surgical decisions. However, accurate diagnosis by pathologists is difficult within the time limitations. Training a robust and accurate deep learning model is also difficult owing to the limited number of frozen datasets with high quality labels. To overcome these issues, we validated the effectiveness of transfer learning from CAMELYON16 to improve performance of the convolutional neural network (CNN)-based classification model on our frozen dataset (N = 297) from Asan Medical Center (AMC). Among the 297 whole slide images (WSIs), 157 and 40 WSIs were used to train deep learning models with different dataset ratios at 2, 4, 8, 20, 40, and 100%. The remaining, i.e., 100 WSIs, were used to validate model performance in terms of patch- and slide-level classification. An additional 228 WSIs from Seoul National University Bundang Hospital (SNUBH) were used as an external validation. Three initial weights, i.e., scratch-based (random initialization), ImageNet-based, and CAMELYON16-based models were used to validate their effectiveness in external validation. In the patch-level classification results on the AMC dataset, CAMELYON16-based models trained with a small dataset (up to 40%, i.e., 62 WSIs) showed a significantly higher area under the curve (AUC) of 0.929 than those of the scratch- and ImageNet-based models at 0.897 and 0.919, respectively, while CAMELYON16-based and ImageNet-based models trained with 100% of the training dataset showed comparable AUCs at 0.944 and 0.943, respectively. For the external validation, CAMELYON16-based models showed higher AUCs than those of the scratch- and ImageNet-based models. Model performance for slide feasibility of the transfer learning to enhance model performance was validated in the case of frozen section datasets with limited numbers.


2021 ◽  
Vol 13 (2) ◽  
pp. 274
Author(s):  
Guobiao Yao ◽  
Alper Yilmaz ◽  
Li Zhang ◽  
Fei Meng ◽  
Haibin Ai ◽  
...  

The available stereo matching algorithms produce large number of false positive matches or only produce a few true-positives across oblique stereo images with large baseline. This undesired result happens due to the complex perspective deformation and radiometric distortion across the images. To address this problem, we propose a novel affine invariant feature matching algorithm with subpixel accuracy based on an end-to-end convolutional neural network (CNN). In our method, we adopt and modify a Hessian affine network, which we refer to as IHesAffNet, to obtain affine invariant Hessian regions using deep learning framework. To improve the correlation between corresponding features, we introduce an empirical weighted loss function (EWLF) based on the negative samples using K nearest neighbors, and then generate deep learning-based descriptors with high discrimination that is realized with our multiple hard network structure (MTHardNets). Following this step, the conjugate features are produced by using the Euclidean distance ratio as the matching metric, and the accuracy of matches are optimized through the deep learning transform based least square matching (DLT-LSM). Finally, experiments on Large baseline oblique stereo images acquired by ground close-range and unmanned aerial vehicle (UAV) verify the effectiveness of the proposed approach, and comprehensive comparisons demonstrate that our matching algorithm outperforms the state-of-art methods in terms of accuracy, distribution and correct ratio. The main contributions of this article are: (i) our proposed MTHardNets can generate high quality descriptors; and (ii) the IHesAffNet can produce substantial affine invariant corresponding features with reliable transform parameters.


Sign in / Sign up

Export Citation Format

Share Document