scholarly journals Modeling and performance calculation of a horizontal axis wind and hydrokinetic turbine: Numerical study

2018 ◽  
Vol 2 (2) ◽  
pp. 70-79
Author(s):  
Anastas Todorov Yangyozov ◽  
Damjanka Stojanova Dimitrova ◽  
Lazar Georgiev Panayotov

A small turbine, working with air and water to generate electricity, was designed and its performance was reported in this paper. The rotor diameter is 150mm. The numerical calculations of the power coefficient, torque, and tip speed ratio of turbine were carried out for a wide range of inlet velocities. The flow passing through the turbine was investigated with commercial CFD code ANSYS CFX 18

Author(s):  
Cosan Daskiran ◽  
Bashar Attiya ◽  
I-Han Liu ◽  
Jacob Riglin ◽  
Alparslan Oztekin

Large eddy simulations of pre-designed micro-hydrokinetic turbine were conducted to investigate the oxygen transfer from air to water. Simulations were performed in extreme conditions having a tip-speed ratio of 3.8 that is higher than the tip-speed ratio at turbine’s design point. Air was injected from the turbine hub downstream in axial direction. Both single phase and multiphase simulations were performed to reveal the influence of air admission on the flow structures and the turbine performance. The mixture multiphase model was employed in multiphase simulation. The results indicated that turbine power generation was reduced roughly 10.5% by air admission, however the torque applied on turbine surface in axial direction did not vary significantly by aeration. The aeration assisted in the suppression of vortices within the flow field. The deviation of the power coefficient and the thrust coefficient was reduced roughly 32% through the inclusion of aeration process.


2013 ◽  
Vol 694-697 ◽  
pp. 630-634 ◽  
Author(s):  
Bin Guo ◽  
Da Zheng Wang ◽  
Jun Wei Zhou

Blade element momentum (BEM) theory is used to design the tidal stream turbine in this paper. ANSYS-CFX and numeca are used to predict the hydrodynamic performance of the turbine. The power coefficient of the turbine obtained by CFD is 39.36% at the design tip speed ratio. A 300mm diameter scale turbine has been built, and the tests were carried out in the circulating water channel, the power coefficient can reach 40.5% at the design tip speed ratio. Through the comparisons between experimental results and CFD results, it proves the application of the numerical method for blade design, and the distributions of the pressure and axial velocity near the blade are analyzed at the end of the paper.


2015 ◽  
Vol 45 (1) ◽  
pp. 14-18
Author(s):  
Zulfa Ferdous ◽  
Md. Quamrul Islam ◽  
M Ali

This paper reports on the experimental investigation of the aerodynamic effects on even and odd number bladed vertical axis vane type rotor. The experiment was conducted with the help of a subsonic wind tunnel together with the experimental set-up of the vane type rotor and a spring balance. To ensure a Reynolds number independent approach, different stream flow was maintained. The flow velocities varied from 5 m/s to 9 m/s covering the Reynolds number from 0.6375 X 10^5 to 1.2 X 10^5. A four, five and six bladed vertical axis vane typerotor was used to determine the aerodynamic properties in dynamic condition. It is found that the power coefficient increases with increasing the number of blade but the significant effect of even and odd number blade is observed on the range of tip speed ratio. An odd number bladed rotor covered a wide range of tip speed ratio compare to the even number one.


Author(s):  
Louis Angelo Danao ◽  
Jonathan Edwards ◽  
Okeoghene Eboibi ◽  
Robert Howell

Numerical simulations using RANS–based CFD have been utilised to carry out investigations on the effects of unsteady wind in the performance of a wind tunnel vertical axis wind turbine. Using a validated CFD model, unsteady wind simulations revealed a fundamental relationship between instantaneous VAWT CP and wind speed. CFD data shows a CP variation in unsteady wind that cuts across the steady CP curve as wind speed fluctuates. A reference case with mean wind speed of 7m/s, wind speed amplitude of ±12%, fluctuating frequency of 0.5Hz and mean tip speed ratio of 4.4 has shown a wind cycle mean power coefficient of 0.33 that equals the steady wind maximum. Increasing wind speed causes the instantaneous tip speed ratio to fall which leads to higher effective angle of attack and deeper stalling on the blades. Stalled flow and rapid changes in angle of attack of the blade induce hysteresis loops in both lift and drag. Decreasing wind speeds limit the perceived angle of attack seen by the blades to near static stall thus reducing the positive effect of dynamic stall on lift generation. Three mean tip speed ratio cases were tested to study the effects of varying conditions of VAWT operation on the overall performance. As the mean tip speed ratio increases, the peak performance also increases.


Author(s):  
Oumnia El Fajri ◽  
Joshua Bowman ◽  
Shanti Bhushan ◽  
David Thompson ◽  
Tim O'Doherty

2021 ◽  
Vol 3 (8) ◽  
Author(s):  
M. Niyat Zadeh ◽  
M. Pourfallah ◽  
S. Safari Sabet ◽  
M. Gholinia ◽  
S. Mouloodi ◽  
...  

AbstractIn this paper, we attempted to measure the effect of Bach’s section, which presents a high-power coefficient in the standard Savonius model, on the performance of the helical Savonius wind turbine, by observing the parameters affecting turbine performance. Assessment methods based on the tip speed ratio, torque variation, flow field characterizations, and the power coefficient are performed. The present issue was stimulated using the turbulence model SST (k- ω) at 6, 8, and 10 m/s wind flow velocities via COMSOL software. Numerical simulation was validated employing previous articles. Outputs demonstrate that Bach-primary and Bach-developed wind turbine models have less flow separation at the spoke-end than the simple helical Savonius model, ultimately improving wind turbines’ total performance and reducing spoke-dynamic loads. Compared with the basic model, the Bach-developed model shows an 18.3% performance improvement in the maximum power coefficient. Bach’s primary model also offers a 12.4% increase in power production than the initial model’s best performance. Furthermore, the results indicate that changing the geometric parameters of the Bach model at high velocities (in turbulent flows) does not significantly affect improving performance.


2012 ◽  
Vol 189 ◽  
pp. 448-452
Author(s):  
Yan Jun Chen ◽  
Guo Qing Wu ◽  
Yang Cao ◽  
Dian Gui Huang ◽  
Qin Wang ◽  
...  

Numerical studies are conducted to research the performance of a kind of lift-drag type vertical axis wind turbine (VAWT) affected by solidity with the CFD method. Moving mesh technique is used to construct the model. The Spalart-Allmaras one equation turbulent model and the implicit coupled algorithm based on pressure are selected to solve the transient equations. In this research, how the tip speed ratio and the solidity of blade affect the power coefficient (Cp) of the small H-VAWT is analyzed. The results indicate that Cp curves exhibit approximate parabolic form with its maximum in the middle range of tip speed ratio. The two-blade wind turbine has the lowest Cp while the three-blade one is more powerful and the four-blade one brings the highest power. With the certain number of blades, there is a best chord length, and too long or too short chord length may reduce the Cp.


2021 ◽  
pp. 1-37
Author(s):  
Mabrouk Mosbahi ◽  
Mouna Derbel ◽  
Mariem Lajnef ◽  
Bouzid Mosbahi ◽  
Zied Driss ◽  
...  

Abstract Twisted Darrieus water turbine is receiving growing attentiveness for small-scale hydropower generation. Accordingly, the need for raised water energy conversion incentivizes researchers to focalise on the blade shape optimization of twisted Darrieus turbine. In view of this, an experimental analysis has been performed to appraise the efficiency of a spiral Darrieus water rotor in the present work. To better the performance parameters of the studied water rotor with twisted blades, three novel blade shapes, namely U-shaped blade, V-shaped blade and W-shaped blade, have been numerically tested using a computational fluid dynamics three-dimensional numerical model. Maximum power coefficient of Darrieus rotor reaches 0.17 at 0.63 tip-speed ratio using twisted blades. Using V-shaped blades, maximum power coefficient has been risen up to 0.185. The current study could be practically applied to provide more effective employment of twisted Darrieus turbines and to improve the generated power from flowing water such as river streams, tidal currents, or other man made water canals.


2012 ◽  
Vol 229-231 ◽  
pp. 2478-2480
Author(s):  
Bin Guo ◽  
Da Zheng Wang ◽  
Jun Wei Zhou

In this paper, the tidal stream turbine blade is designed by using blade element momentum (BEM) theory. The bidirectional airfoil is created derived from NACA airfoil. Ansys-CFX is used to predict the hydrodynamic performance of this bidirectional airfoil, and it turns out that the bidirectional airfoil works well at both of the tidal current directions. A test turbine named rotor 2 is used, and a comparison is made between experimental results of the test turbine and numerical prediction results to prove the correctness of the numerical method. The power coefficient of bidirectional tidal stream turbine obtained by CFD method is 39.36% at the design tip speed ratio.


Author(s):  
Peter Bachant ◽  
Martin Wosnik

The performance characteristics of two cross-flow axis hydrokinetic turbines were evaluated in UNH’s tow and wave tank. A 1m diameter, 1.25m (nominal) height three-bladed Gorlov Helical Turbine (GHT) and a 1m diameter, four-bladed spherical-helical turbine (LST), both manufactured by Lucid Energy Technologies, LLP were tested at tow speeds up to 1.5 m/s. Relationships between tip speed ratio, solidity, power coefficient (Cp), kinetic exergy efficiency, and overall streamwise drag coefficient (Cd) are explored. As expected, the spherical-helical turbine is less effective at converting available kinetic energy in a relatively low blockage, free-surface flow. The GHT was then towed in waves to investigate the effects of a periodically unsteady inflow, and an increase in performance was observed along with an increase in minimum tip speed ratio at which power can be extracted. Regarding effects of turbulence, it was previously documented that an increase in free-stream homogenous isotropic turbulence increased static stall angles for airfoils. This phenomenon was first qualitatively investigated on a smaller scale with a NACA0012 hydrofoil in a UNH water tunnel, using an upstream grid turbulence generator and using high frame-rate PIV to measure the flow field. Since the angle of attack for a cross-flow axis turbine blade oscillates with higher amplitude as tip speed ratio decreases, any delay of stall should allow power extraction at lower tip speed ratios. This hypothesis was tested experimentally on a larger scale in the tow tank by creating grid turbulence upstream of the turbine. It is shown that the range of operable tip speed ratios is slightly expanded, with a possible improvement of power coefficient at lower tip speed ratios. Drag coefficients at higher tip speed ratios seem to increase more rapidly than in the non-turbulent case.


Sign in / Sign up

Export Citation Format

Share Document