scholarly journals Lithium capture in Seawater Reverse Osmosis (SWRO) Brine using membrane-based Capacitive Deionization (MCDI) System

2021 ◽  
Author(s):  
Reem Azam ◽  
Tasneem ElMakki ◽  
Sifani Zavahir ◽  
Zubair Ahmad ◽  
Gago Guillermo Hijós ◽  
...  

Lithium-battery based industries including vehicles, electronics, fusion and thermonuclear, consume lithium rapidly, which raises the need for developing a lithium recovery system. Lithium global market consumption in 2016 was reported to be 35% in batteries manufacturing. The total content of lithium in seawater and oceans is estimated at 2.5 × 1014 kg, with an average concentration of 0.17 mg/L. Salt lakes contain 1,000–3,000 mg/L of lithium, while geothermal water up to 15 mg/L. In 2020, the US Geological Survey (USGS) reported that the total Li resource is about 80 million ton. In nature, lithium does not exist as pure metal owing to its high reactivity with water, air, and nitrogen. Commonly lithium is mined from metallic minerals from earth or brine salt marsh and used in various fields in the form of lithium carbonate (60%), lithium hydroxide (23%), lithium metal (5%), lithium chloride (3%), and butyl lithium (4%). The extraction of 1 kg of lithium needs around 5.3 kg of lithium carbonate. The amount required to produce lithium-ion batteries (LIB) for cell phones or electric cars is estimated to be 0.8 kg/s of lithium metal, which is equivalent to 25,000 tons per year. As we use this much of LIB, this will end up having significant amounts of lithium battery waste, thus recovering LIBS and using it as cathode electrode in MCDI is an excellent way with benefit. This work proposes to efficiently utilize seawater reverse osmosis (SWRO) brine as a medium to recover lithium from seawater followed by its selective capture of lithium element using SLIB as MCDI cathode electrode material. Thus, these attempts could be closer to an improved and more effective loop of lithium targeted capture-reuse system.

Subject Outlook for the lithium market. Significance Moves by the lithium 'majors' to consolidate control over the supply chain by taking positions in start-up projects have boosted the share prices of major lithium producers this year. The market for lithium is expected to rise from just under 200,000 tonnes of lithium carbonate equivalent (LCE) in 2015 to 310,000-320,000 in 2020 and 400,000 by 2025. Electric cars are expected to be the strongest source of new lithium demand and lithium-ion batteries are also crucial to consumer electronics, particularly smartphones and tablets. Impacts Hard rock mining has a shorter lead time than brine evaporation output, so hard rock output is likely to dominate in the short term. Brine evaporation output is cheaper to produce and is likely to undercut hard rock projects in the longer term. The share performance of lithium producers is likely to stabilise as projects get development sanction and supply keeps pace with demand. Lithium demand is certain to grow, but the rate of electric car adoption is a critical factor in fulfilling bullish demand forecasts. Plug-in hybrid electric cars are forecast to enjoy higher sales than battery electric cars but they need less lithium.


2013 ◽  
Vol 1492 ◽  
pp. 3-14 ◽  
Author(s):  
Ihor A. Kunasz

ABSTRACTThe second half of the twentieth century saw a dramatic shift in lithium chemicals production from traditional pegmatite sources to brines. Today, the bulk of lithium carbonate, which serves as the raw material for various downstream lithium chemicals, including lithium metal for the lithium batteries, is produced from the brines of the Salar de Atacama, Chile, the Salar del Hombre Muerto, Argentina and Clayton Valley Nevada, U.S.A. There is minor production in Tibet and the People’s Republic of China (PRC). Australian spodumene concentrates are converted to lithium carbonate in the PRC.The resurgence in the potential development of electric cars has resulted in the increased exploration for and identification of potential new lithium brine operations and the reassessment of some pegmatite deposits.A number of predictions for a potentially large electric car market scenario have raised questions on the availability of sufficient lithium resources. However, since the original 1976 report on global lithium resources by the National Academies of Sciences and Engineering, newly identified deposits have almost quadrupled the total potentially available lithium resources. Based on the best predictions, the lithium supply is more than adequate to meet the demand for electric cars well into the 21st century.


2019 ◽  
Author(s):  
Chem Int

The objective of this work is to study the ageing state of a used reverse osmosis (RO) membrane taken in Algeria from the Benisaf Water Company seawater desalination unit. The study consists of an autopsy procedure used to perform a chain of analyses on a membrane sheet. Wear of the membrane is characterized by a degradation of its performance due to a significant increase in hydraulic permeability (25%) and pressure drop as well as a decrease in salt retention (10% to 30%). In most cases the effects of ageing are little or poorly known at the local level and global measurements such as (flux, transmembrane pressure, permeate flow, retention rate, etc.) do not allow characterization. Therefore, a used RO (reverse osmosis) membrane was selected at the site to perform the membrane autopsy tests. These tests make it possible to analyze and identify the cause as well as to understand the links between performance degradation observed at the macroscopic scale and at the scale at which ageing takes place. External and internal visual observations allow seeing the state of degradation. Microscopic analysis of the used membranes surface shows the importance of fouling. In addition, quantification and identification analyses determine a high fouling rate in the used membrane whose foulants is of inorganic and organic nature. Moreover, the analyses proved the presence of a biofilm composed of protein.


2021 ◽  
Author(s):  
Lei Ye ◽  
Meng Liao ◽  
Xiangran Cheng ◽  
Xufeng Zhou ◽  
Yang Zhao ◽  
...  

2021 ◽  
Vol 41 ◽  
pp. 102812
Author(s):  
Simone Casino ◽  
Thomas Beuse ◽  
Verena Küpers ◽  
Markus Börner ◽  
Tobias Gallasch ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1206
Author(s):  
Xuansen Fang ◽  
Yaolong He ◽  
Xiaomin Fan ◽  
Dan Zhang ◽  
Hongjiu Hu

The prediction of electrochemical performance is the basis for long-term service of all-solid-state-battery (ASSB) regarding the time-aging of solid polymer electrolytes. To get insight into the influence mechanism of electrolyte aging on cell fading, we have established a continuum model for quantitatively analyzing the capacity evolution of the lithium battery during the time-aging process. The simulations have unveiled the phenomenon of electrolyte-aging-induced capacity degradation. The effects of discharge rate, operating temperature, and lithium-salt concentration in the electrolyte, as well as the electrolyte thickness, have also been explored in detail. The results have shown that capacity loss of ASSB is controlled by the decrease in the contact area of the electrolyte/electrode interface at the initial aging stage and is subsequently dominated by the mobilities of lithium-ion across the aging electrolyte. Moreover, reducing the discharge rate or increasing the operating temperature can weaken this cell deterioration. Besides, the thinner electrolyte film with acceptable lithium salt content benefits the durability of the ASSB. It has also been found that the negative effect of the aging electrolytes can be relieved if the electrolyte conductivity is kept being above a critical value under the storage and using conditions.


2021 ◽  
Vol 13 (3) ◽  
pp. 1251
Author(s):  
Yichi Zhang ◽  
Zhiliang Dong ◽  
Sen Liu ◽  
Peixiang Jiang ◽  
Cuizhi Zhang ◽  
...  

As the raw material of lithium-ion batteries, lithium carbonate plays an important role in the development of new energy field. Due to the extremely uneven distribution of lithium resources in the world, the security of supply in countries with less say would be greatly threatened if trade restrictions or other accidents occurred in large-scale exporting countries. It is of great significance to help these countries find new partners based on the existing trade topology. This study uses the link prediction method, based on the perspective of the topological structure of trade networks in various countries and trade rules, and eliminates the influence of large-scale lithium carbonate exporting countries on the lithium carbonate trade of other countries, to find potential lithium carbonate trade links among importing and small-scale exporting countries, and summarizes three trade rules: (1) in potential relationships involving two net importers, a relationship involving either China or the Netherlands is more likely to occur; (2) for all potential relationships, a relationship that actually occurred for more than two years in the period in 2009–2018 is more likely to occur in the future; and (3) potential relationships pairing a net exporter with a net importer are more likely to occur than other country combinations. The results show that over the next five to six years, Denmark and Italy, Netherlands and South Africa, Turkey and USA are most likely to have a lithium carbonate trading relationship, while Slovenia and USA, and Belgium and Thailand are the least likely to trade lithium carbonate. Through this study, we can strengthen the supply security of lithium carbonate resources in international trade, and provide international trade policy recommendations for the governments of importing countries and small-scale exporting countries.


Sign in / Sign up

Export Citation Format

Share Document