scholarly journals Demand-side management mechanisms in industry

2020 ◽  
Vol 21 (3) ◽  
pp. 175-195
Author(s):  
Anatoly P. Dzyuba ◽  
Irina A. Solovyeva

Intensive development of technologies that increase energy efficiency makes the global and the Russian industry consider the introduction of demand-side management mechanisms. Though demand-side management technologies in Russia are at the early stages of introduc tion, existing mechanisms of electricity and natural gas supply allow consumers to reduce their costs and result in equalization of the demand for energy across the entire energy system. The research objective is to explore the energy tariffs in the wholesale and retail markets and mecha nisms for supplying natural gas by regional contractors as well as using the commodity exchange. The authors design mechanisms for industrial consumers to choose the most efficient options to pay for energy resources using the criterion of demand-side management. The research method ology includes the theory of industrial markets and a problem-oriented approach. The authors apply analysis, synthesis, system analysis, statistical methods. Yielded results of the research into programmes on demand-side management administered in different countries enable the authors to prove that the most efficient direction for demand-side management development in Russia is economic norm setting. Within this direction the authors develop algorithms and decision-making matrices for choosing the most efficient tariff option to buy electricity and natural gas by industrial consumers. The researchers evidence the possibility of implement ing demand-side management on energy markets of Russia and provide methodological and organisational support. The findings can be helpful for industrial enterprises and government agencies developing and running their energy efficiency improvement programs.

2019 ◽  
pp. 3-17
Author(s):  
Turatbek Kasymov

This article reviews energy consumption in the Kyrgyz Republic economy, environmental indicators and strategies to further develop the national fuel and energy system to ensure energy efficiency and energy saving. An existing situation in energy efficiency of buildings in the country is described. Secondary legislation and by-laws approved by the Government of the Kyrgyz Republic as well as several technical standards, norms, methods and guidelines approved by the order of the State Construction Agency of the Kyrgyz Republic are presented. Applying modern insulating materials are suggested as possible solutions to increase energy efficiency and energy saving. The advantages of EPS-beton in comparison with other thermal insulation materials are discussed and foreign experience of use of EPS-beton products in increasing energy efficiency of buildings is presented.


2017 ◽  
Vol 871 ◽  
pp. 77-86
Author(s):  
Stefanie Kabelitz ◽  
Sergii Kolomiichuk

The supply of electricity is growing increasingly dependent on the weather as the share of renewable energies increases. Different measures can nevertheless maintain grid reliability and quality. These include the use of storage technologies, upgrades of the grid and options for responsiveness to supply and demand. This paper focuses on demand side management and the use of flexibility in production processes. First, the framework of Germany’s energy policy is presented and direct and indirect incentives for businesses to seek as well as to provide flexibility capabilities are highlighted. Converting this framework into a mixed integer program leads to multi-objective optimization. The challenge inherent to this method is realistically mapping the different objectives that affect business practices directly and indirectly in a variety of laws. An example is introduced to demonstrate the complexity of the model and examine the energy flexibility. Second, manufacturing companies’ energy efficiency is assessed under the frequently occurring conditions of heavily aggregated energy consumption data and of information with insufficient depth of detail to perform certain analyses, formulate actions or optimize processes. The findings obtained from the energy assessment and energy consumption projections are used to model the production system’s energy efficiency and thus facilitate optimization. Methods of data mining and machine learning are employed to project energy consumption. Aggregated energy consumption data and different production and environmental parameters are used to assess indirectly measured consumers and link projections of energy consumption with the production schedule.


2019 ◽  
Vol 135 ◽  
pp. 04056 ◽  
Author(s):  
Galimkair Mutanov ◽  
Sayabek Ziyadin

The article discusses the relevance of the problem of energy efficiency of industrial enterprises, along with increasing environmental safety of production and increasing social responsibility. The technique of estimation of production efficiency and its influence in management of ecological system on the basis of energy-entropy method is considered. Relevant questions are: improvement of the universal principles of energy efficiency in specific sectors and to develop tools of economic analysis energy infrastructure of industrial enterprises on the basis of the energy-entropy method using various ratios and find new ways of efficient use of energy. The purpose of this article is to develop new methods for assessing the efficiency of production and management. The problem is largely actualized by the fact that at present the question of assessing the effectiveness of energy systems management.


2013 ◽  
Vol 769 ◽  
pp. 319-326 ◽  
Author(s):  
Martin Beck ◽  
Tilo Sielaff

Industrial enterprises are increasingly driven to tap the potentials of energy efficiency in existing and future production sites. The challenge is to identify cost-efficient levers for a low energy demand in the linked energy system of production machines and peripheral devices. Considering enabling technologies for energy efficiency and energy recovery in a cascaded energy network with energy storages this paper presents an approach towards energy and cost-efficient system configurations for production sites. An outlook will be given on the research center eta-factory for energy efficient factories at the PTW, TU Darmstadt.


2015 ◽  
Vol 805 ◽  
pp. 25-31 ◽  
Author(s):  
Ralf Boehm ◽  
Johannes Bürner ◽  
Jörg Franke

In electric energy systems based on renewable generation plants supply and demand often do not occur in the same period of time. Consequently demand side management is gaining importance whereby decentralized automation offers opportunities in industrial environments. Compressed air systems on industrial plants consist of air compressors, compressed air reservoirs and compressed air lines. With suitable dimensioning those industrial compressed-air systems can be used for demand side management purpose. As power consumption of industrial air compressors ranges between a few and several hundred kilowatts each, swarms of communicatively connected air compressors can contribute to the stabilization of power grids. To avoid costly production downtime it is to ensure, that a reliable, non-disruptive supply of compressed air can be maintained at all time. Industrial compressed air systems equipped with automation technology and artificial intelligence, which hereinafter are referred to as Cyber-Physical Compressed Air Systems (CPCAS), allow new business models for utilities, industrial enterprises, compressor manufacturers and service providers. In addition to basic operating parameters like current air pressure and status, those systems can process further information and create, for example, profiles on compressed air consumption over time. By enriching those profiles with data on pressure, volumes, system restrictions and current production requirements (plans), the CPCAS can identify the available potential for demand side management. Ipso facto predictive power on electricity consumption is increasing. By providing the information obtained to the power company or a service provider, savings in electricity costs may be achieved. Expenses within the industrial company may be lowered further as compliance with agreed load limits is being improved by automatic shutdown of air compressors upon reaching the load limit. Within this article the structure of the aforementioned Cyber-Physical Compressed Air Systems is presented in more detail, relations between the major actors are being shown and possible business models are being introduced.


Sign in / Sign up

Export Citation Format

Share Document