Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1148 ◽  
Author(s):  
Roman Husák ◽  
Hynek Hadraba ◽  
Zdeněk Chlup ◽  
Milan Heczko ◽  
Tomáš Kruml ◽  
...  

Oxide dispersion-strengthened (ODS) materials contain homogeneous dispersions of temperature-stable nano-oxides serving as obstacles for dislocations and further pinning of grain boundaries. The strategy for dispersion strengthening based on complex oxides (Y-Hf, -Zr, -Ce, -La) was developed in order to refine oxide dispersion to enhance the dispersion strengthening effect. In this work, the strengthening of EUROFER steel by complex oxides based on Y and elements of the IIIB group (lanthanum, scandium) and IVB group (cerium, hafnium, zirconium) was explored. Interparticle spacing as a dispersoid characteristic appeared to be an important factor in controlling the dispersion strengthening contribution to the yield strength of ODS EUROFER steels. The dispersoid size and average grain size of ODS EUROFER steel were altered in the ranges of 5–13 nm and 0.6–1.7 µm, respectively. Using this strategy, the yield strength of the prepared alloys varied between 550 MPa and 950 MPa depending on the doping element.


Author(s):  
Yalong Zou ◽  
Jiabo Le ◽  
Yufeng Cao ◽  
Na An ◽  
Yang Zhou ◽  
...  

The attractive photoelectrochemical (PEC) water splitting for hydrogen fuels always desires new semiconductors which provide stronger visible light absorption with suitable band positions. Sn(II) complex oxides are expected to offer...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Meng Meng ◽  
Yuanwei Sun ◽  
Yuehui Li ◽  
Qichang An ◽  
Zhenzhen Wang ◽  
...  

AbstractThe d-band-filling of transition metals in complex oxides plays an essential role in determining their structural, electronic and magnetic properties. Traditionally, at the oxide heterointerface, band-filling control has been achieved via electrostatic modification in the structure of field-effect transistors or electron transfer, which is limited to the quasi-two-dimension at the interface. Here we report a three-dimensional (3D) band-filling control by changing the local lattice coordination in a designed oxide heterostructure. At the LaCoO3/LaTiO3 heterointerface, due to the Fermi level mismatch, electrons transfer from LaTiO3 to LaCoO3. This triggers destabilisation of the CoO6 octahedrons, i.e. the formation of lattice configurations with a reduced Co valence. The associated oxygen migration results in the 3D topotactic phase transition of LaCoO3. Tuned by the thickness of LaTiO3, different crystalline phases and band-fillings of Co occur, leading to the emergence of different magnetic ground states.


Author(s):  
I A Sologubova ◽  
M K Kotvanova ◽  
S S Pavlova
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document