scholarly journals Behavior of Steel- Lightweight Concrete Composite Beams with Partial Shear Interaction

2018 ◽  
Vol 26 (2) ◽  
pp. 20-34
Author(s):  
Fareed Hameed Majeed

This experimental work along with an analyticalanalysis is investigated.The behavior of simply supported steel beams with lightweight and normal concrete slab that have the same compressive strengthand slump was studied. Eight specimens tested under mid-point load and analysis by plastic analysis theory. Four of composite beams havea steel I-section beam with normal concreteslab and the other four with lightweight concrete slab. Different degrees of shear interaction were considered (100% to 40%). It was observed that there are no essential differences between the modes of failure that appeared in the tested composite beams with normal and lightweight concrete. Also, it was notedthat there is a decrease in the initial stiffness and also in the ultimate strength of the composite beams when the concrete of the flanges for the tested specimens was replaced from normal to lightweight concrete for different degrees of shear connections.The analytical results for all tested beam specimens, except that with normal concrete and 100% degree of shear interaction, gave overestimate results compared with those of experimental results.

1992 ◽  
Vol 19 (1) ◽  
pp. 1-10 ◽  
Author(s):  
M. R. Veldanda ◽  
M. U. Hosain

This paper summarizes the results of tests performed on 48 push-out specimens to investigate the feasibility of using perfobond rib type shear connectors in composite beams with ribbed metal decks placed parallel to the steel beams. The perfobond rib shear connector is a flat steel plate containing a number of holes. The results indicate that perfobond rib connectors can be effectively used in composite beams with ribbed metal decks placed parallel to the steel beams. An appreciable improvement in performance was observed in test specimens when additional reinforcing bars were passed through the perfobond rib holes. Shank shear was the principal mode of failure in specimens with headed studs. In specimens with perfobond rib, failure was triggered by the longitudinal splitting of the concrete slab, followed by the crushing of concrete in front of the perfobond rib. Key words: composite beam, shear connector, perfobond rib, headed stud, push-out test, metal deck.


2018 ◽  
Author(s):  
Christopher McComb ◽  
Fariborz Tehrani

Reinforced concrete construction and steel construction are two of the most common contemporary construction methods. Both methods make use of composite decks as floor systems and diaphragms. During the design of composite decks, the interaction between the steel deck and concrete slab is typically disregarded when calculating the strength of the composite di- aphragm due to lack of complete shear transfer, as existing practices such as stamping are not effective to provide substantial composite action. This conservative assumption essentially results in non-efficient use of material. This paper presents a method for ensuring shear transfer through the use of conventional sheet metal screws, driven through the corrugated steel deck and embedded in the fresh concrete. This method is proposed for use in the field between formed steel beams. Both experimental and analytical stud- ies support an increase in strength with the addition of embedded fasteners. Further, experimental results indicate an additional increase in strength with the addition of synthetic reinforcing fibers. The increase in strength with the addition of the fasteners is on the order of 100%. When fasteners are already in use, the addition of synthetic reinforcing fibers can increase strength on the order of 10%. The ultimate deflection of enhanced deck is comparable to deck tested without fasteners, but the initial stiffness of enhanced deck is much higher.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 2171-2180
Author(s):  
Yuchen Jiang ◽  
Xiamin Hu ◽  
Wan Hong ◽  
Jun Zhang ◽  
Fangqian He

A new type of structural element, the timber-concrete composite beam, exhibited excellent structural performance. The notched connector is widely used in timber-concrete composite systems as a result of its considerable shear capacity and stiffness. Six groups of push-out tests were performed to investigate the shear performance of the notched connectors for the timber-concrete composite beams, with consideration to the varying concrete types, the shear length of the timber, and whether the notch was reinforced. From the test results, the notched connectors that corresponded to the shear fracture of concrete or timber had a low shear capacity and poor ductility. Notched connectors that simultaneously failed at the concrete slab (via shear force), as well as at the lag screw reinforcement point during bending presented the greatest shear capacity. This was followed by the notched connectors that exhibited diagonal-compression failure at the concrete slab. Screw fasteners in the notch were shown to improve the strength, ductility, and post-peak behavior of the notched connectors. In addition, the concrete type, the shear length of the timber, and whether the notch was reinforced were found to have no major influence on the slip modulus of the notched connectors.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 438
Author(s):  
Taif A. Abdulkareem ◽  
Ashraf A. Alfeehan

The ribbed slabs provide a lighter and stiffer slab than an equivalent traditional slab with minimizing the total volume of the materials. Four one-way lightweight concrete panels, including one flat and three ribbed panels were cast and tested under two-point load as simply supported up to the failure. The main investigated variable is a ratio of the rib depth (d) to the overall beam depth (h). All the panels have the same concrete volume and the same steel reinforcement ratio. Also, the width of the rib is equal to the slab thickness as a constraint condition in all the panels. Data were recorded at the loading stages to determine the load capacity and the deflection. A nonlinear finite element analysis carried out by using ANSYS-15 software program to analyze the panels and to verify the results. Increase the (d/h) ratio improved the structural behavior by increase the carrying load capacity and reduces the deflection to a certain limit. Compatibility results have been obtained between the numerical and experimental work.   


2014 ◽  
Vol 578-579 ◽  
pp. 184-187
Author(s):  
Xu Dong Wang ◽  
Li Zhu ◽  
Pei Jun Wang

The fire design of structural members depends on its temperature distributions. This paper investigates the temperature distributions of protected cellular composite beams heated three sides. Modeling in ABAQUS indicates that the fire protection and the concrete slab make a big difference to the temperature distributions of steel beams. Temperature gradient exists across the web region of the steel beam. Comparison with predictions from European design codes shows a good correlation between each other, but some discrepancies exist for the top flange.


2011 ◽  
Vol 7 (2) ◽  
pp. 28 ◽  
Author(s):  
T. Salama ◽  
H.H. Nassif

 The effective flange width is a concept proposed by various codes to simplify the computation of stress distribution across the width of composite beams. Questions have been raised as to the validity of the effective slab width provisions, since they have a direct effect on the computed ultimate moment as well as serviceability limit states such as deflection, fatigue, and overloading. The objective of this paper is to present results from an experimental and analytical investigation to determine the effective slab width in steel composite beams. The Finite Element Method (FEM) was employed for the analysis of composite steel-concrete beams having variable concrete flange widths. Results were compared to those from tests performed on eight beams loaded to failure. Beam test specimens had variable flange width and various degrees of composite action (shear connectors). The comparison presented in terms of the applied load versus deflection, and strain in the concrete slab show that the AISC-LRFD code is conservative and underestimates the width active. Based on a detailed parametric study an equation for the calculation of the effective flange width is recommended. 


2016 ◽  
Vol 2 (2) ◽  
pp. 52-62 ◽  
Author(s):  
Hamid Eskandari ◽  
Tahereh Korouzhdeh

This study presents exact solution analysis for the cost optimization of Composite Beams (CB) based on the Load and Resistance Factor Design (LRFD) specifications. Matlab code formulation is applied to analysis of sensitivity for various parameters such as cost of concrete, steel beam, span length, concrete slab thickness, compressive strength of concrete, steel beams space and shear connectors on CB. Almost 20 thousands design were analysed to obtain various contour which be found that it is feasible, efficient and effective and capable in optimization of composite beam designs.The obtained results represent that many of the contour are capable by achieving substantial cost savings for composite materials. Therefore, the analysis can be developed for practical designs to structural designers. A parametric study was also conducted to investigate the effects of IPE, IPB, INP profiles, UNP size and thickness of slabs and beam length on the cost optimization of CB.


1986 ◽  
Vol 13 (6) ◽  
pp. 733-740 ◽  
Author(s):  
M. S. Elkelish ◽  
Hugh Robinson

An analytical study of the longitudinal cracking of composite beams with ribbed concrete slab on metal deck is presented. A layered finite element is used to model the composite beam in the analysis. The influence of six parameters on the development of the longitudinal crack is investigated in this study. These parameters are type of loading, compressive strength of the concrete slab, beam span to slab width ratio, thickness of the solid part of the slab, percentage of transverse reinforcement, and the existence of the metal deck. Three types of loading are considered, namely, uniformly distributed load over the entire slab area, single point load applied at mid-span of the beam, and two point loads applied at the third points of the span. The type of loading of composite beams has a significant effect on the location of the initial longitudinal crack.


2021 ◽  
Vol 7 (3) ◽  
pp. 549-559
Author(s):  
Syahrul Syahrul ◽  
M. W. Tjaronge ◽  
Rudy Djamaluddin ◽  
A. A. Amiruddin

This paper presents an experimental study of the behavior of Normal Concrete Beams (NCB) and composite beams with lightweight foamed concrete (CB), reinforced with steel bar measuring 2 f 8 mm in the compressive section and 2 D 16 mm in the tensile section, shear steel bar f 8 mm. The sample consisted of two normal concrete beams (NCB) and two composite beams with lightweight foamed concrete (CB). The main variables in this study are the type of concrete, the type of steel bar and the flexural behavior. The beam samples were tested by two-point loading, failure mode and crack width were observed. The results showed that the flexural process of normal concrete blocks (NCB) and composite beams with lightweight foamed concrete (CB) was almost the same. There is no slip failure at the combined interface, the flexural capacity of the composite beam with lightweight foamed concrete can be calculated based on the statics analysis and plane-section assumptions. To calculate the ultimate capacity of a composite beam with lightweight foamed concrete is to convert a section consisting of more than one fc' to an equivalent section consisting of one fc'. Furthermore, it is validated by calculating the theoretical moment capacity and comparing the theoretical moment capacity of the experimental results. The results of the flexural test, composite beam with lightweight foamed concrete (CB) showed ductile deflection behavior, diagonal crack patterns, and low flexural capacity of the beam (NCB). Doi: 10.28991/cej-2021-03091673 Full Text: PDF


Author(s):  
Nguyen Tran Hieu

Nowadays, with the development of cutting and welding technologies, steel beams with regular circular openings, called cellular beams, have been widely used for construction. The cellular beams could be designed either as steel beam or composite beam when headed shear connectors connect concrete slab to top flange of steel beam. This paper presents a procedure to design cellular composite beams according to EN 1994-1-1. In addition, a parametric study is carried out to evaluate the influence of circular opening geometry to ultimate load and failure mode of a series of cellular composite beams. As a result, an optimal dimension of cellular beam is proposed. Article history: Received 28 February 2018, Revised 22 March 2018, Accepted 27 April 2018


Sign in / Sign up

Export Citation Format

Share Document