scholarly journals Experimental study on notched connectors for glulam-lightweight concrete composite beams

BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 2171-2180
Author(s):  
Yuchen Jiang ◽  
Xiamin Hu ◽  
Wan Hong ◽  
Jun Zhang ◽  
Fangqian He

A new type of structural element, the timber-concrete composite beam, exhibited excellent structural performance. The notched connector is widely used in timber-concrete composite systems as a result of its considerable shear capacity and stiffness. Six groups of push-out tests were performed to investigate the shear performance of the notched connectors for the timber-concrete composite beams, with consideration to the varying concrete types, the shear length of the timber, and whether the notch was reinforced. From the test results, the notched connectors that corresponded to the shear fracture of concrete or timber had a low shear capacity and poor ductility. Notched connectors that simultaneously failed at the concrete slab (via shear force), as well as at the lag screw reinforcement point during bending presented the greatest shear capacity. This was followed by the notched connectors that exhibited diagonal-compression failure at the concrete slab. Screw fasteners in the notch were shown to improve the strength, ductility, and post-peak behavior of the notched connectors. In addition, the concrete type, the shear length of the timber, and whether the notch was reinforced were found to have no major influence on the slip modulus of the notched connectors.

1976 ◽  
Vol 3 (4) ◽  
pp. 514-522 ◽  
Author(s):  
M. N. El-Ghazzi ◽  
H. Robinson ◽  
I. A. S. Elkholy

The longitudinal shear failure of the slab of composite beams is constrained to occur at a predetermined shear surface. A method for calculating the longitudinal shear capacity of the slab of simply-supported steel–concrete composite beams is presented. The method is based on analyzing the stresses at failure of the concrete elements located at the slab shear surface.A design chart based on estimating the transverse normal stress required within the concrete slab to achieve the full ultimate flexural capacity of the composite beam is proposed. Alternatively, using elastic–plastic stress distribution across the concrete slab, the longitudinal compressive force due to bending and hence the applied moment can be predicted for any longitudinal shear capacity of the slab. The proposed design and analysis when compared to previous tests and analysis showed good agreement.The slab width and the shear span of the composite beam are found to be two important parameters which cannot be neglected when estimating the longitudinal shear capacity of the slab. These two parameters have been neglected in the empirical solutions previously adopted.


2019 ◽  
Vol 817 ◽  
pp. 552-559
Author(s):  
Francesca Ferretti ◽  
Andrea Incerti ◽  
Anna Rosa Tilocca ◽  
Claudio Mazzotti

During the last decades, several seismic phenomena have shown the high vulnerability of existing stone masonry structures subject to horizontal actions. Innovative composite materials, such as Fiber Reinforced Cementitious Matrix (FRCM), can be adopted for the retrofitting of masonry structures. The use of these innovative FRCM systems is usually combined with a more traditional retrofitting technique: grout injection. It allows to restore or improve the transversal connection between wall leaves, ensuring a monolithic behavior of the structural element. The objective of this research was to analyze the effect of the quality of the grout injection on the shear response of FRCM strengthened stone masonry panels. Results from an experimental campaign, where stone masonry specimens were subject to diagonal compression tests, are therefore presented in this paper. Two samples were subject to grout injection and one of them was strengthened with Steel Reinforced Grout (SRG). Comparisons between the experimental results showed that grout injection alone, if correctly executed, could determine a significant improvement in the shear capacity of masonry panels. The application of the FRCM strengthening system could further enhance the behavior of the samples, especially influencing the failure mode. Comparisons with analytical formulations for the evaluation of the capacity of strengthened walls are also presented.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Lili Wu ◽  
Lipei An ◽  
Jiawei Li

Considering that the fixed crack model by default of the general finite element software was unable to simulate the shear softening behavior of concrete in the actual situation, a rotational crack model based on the modified compression field theory developed by UMAT (user material) of ABAQUS software was proposed and applied to the nonlinear analysis, and a numerical simulated model for the steel-concrete composite slab was built for shear analysis. Experimental studies and numerical analyses were used to investigate the shear load-carrying capacity, deformation, and crack development in steel plate-concrete composite slab, as well as the effects of the shear span ratio and shear stud spacing on the shear performance and the contribution of the steel plate and the concrete to the shear performance. Shear capacity tests were conducted on three open sandwich steel plate-concrete composite slabs and one plain concrete slab without a steel plate. The results indicated that the shear-compression failure mode occurred primarily in the steel plate-concrete composite slab and that the steel plate sustained more than 50% of the total shear force. Because of the combination effect of steel plate, the actual shear force sustained by the concrete in the composite slab was 1.27 to 2.22 times greater than that of the calculated value through the Chinese Design Code for Concrete Structures (GB 50010-2010). Furthermore, the shear capacity of the specimen increases by 37% as the shear stud spacing decreases from 250 mm to 150 mm. By comparing the shear capacity, the overall process of load deformation development, and the failure mode, it was shown that the simulation results corresponded with the experimental results. Furthermore, the numerical simulation model was applied to analyze the influence of some factors on composite slab, and a formula of shear bearing capacity of slab was obtained. The results of the formula agreed with the test result, which could provide references to the design and application of steel plate-concrete composite slab.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wei Wang ◽  
Xie-dong Zhang ◽  
Xi-long Zhou ◽  
Lin Wu ◽  
Hao-jie Zhu

Multi-bolt shear connectors (MBSCs), arranging bolts as a group in several rows, can be applied in prefabricated steel–concrete composite beams or bridges (SCCBs) to reduce the construction time and meet the requirements of sustainable development. The mechanical behavior of bolt shear connectors has been broadly investigated in recent years, but they were mainly focused on the normal arrangement. The shear performance of MBSCs is not consistent with that of the same number of single bolts. In this study, a three-dimensional (3D) finite element model (FEM) was developed to investigate the multiple bolts effect and its mechanical performance. Material non-linearities and the interactions among all components were included in the FEM. The accuracy and reliability of the proposed FEM were initially verified against the available push-out test results. The validated FEM further studied the load–slip relationship, shear capacity, and shear stiffness of the MBSCs. A parametric study was carried out to determine the effect of the bolt spacing, bolt row numbers, the concrete strength, and the bolt diameter on the shear performance of MBSCs. Based on the extensive parametric analyses, design recommendations considering the multiple bolts effect for predicting the shear resistance per bolt in multi-bolt connectors were proposed and verified.


2019 ◽  
Vol 5 (10) ◽  
pp. 2081-2092
Author(s):  
Senqiang Lu ◽  
Wei Zhao ◽  
Puge Han ◽  
Zhenyuan Hang

In order to achieve a kind of shear connector suitable for rapid-assembling steel-concrete composite beams, a new type of hybrid shear connectors is proposed, in which the concrete slab with prefabricated circular holes and the steel beam with welded studs are installed and positioned, and then epoxy mortar is filled in the prefabricated hole to fix the studs. To study the mechanical behavior of these hybrid connectors, test on 18 push-out specimens with different prefabricated circular holes are carried out. ABAQUS finite element software is adopted to verify the relationship between the numerical simulation and experiment, influences of the epoxy mortar strength and prefabricated circular holes diameter are studied. The results show that filling epoxy mortar in the prefabricated hole is beneficial to improve the stiffness and bearing capacity of the specimen; the change of epoxy mortar strength has a certain impact on the bearing capacity and stiffness of the hybrid connector; In the case of the same strength of the filling material, the size of the prefabricated circular holes diameter directly affects the stiffness and bearing capacity of the shear stud. The shear capacity equations proposed by considering the epoxy mortar strength and prefabricated holes diameter, and it has a wide applicability.


2014 ◽  
Vol 1044-1045 ◽  
pp. 71-74
Author(s):  
Jing Ping Yang

In order to investigate mechanics performance of rubber concrete steel composite beam, nonlinear analysis on four steel concrete composite beams with different amount of rubber has been carried out using finite element analysis software, and the influence of rubber concrete to mechanical properties of composite beam was explored. The results show that ductility, crack resistance of rubber concrete slab, shear capacity of shear connector for rubber concrete steel composite beam are improved significantly compared with ordinary steel concrete composite beams. Along with the increase of rubber content, the energy consumption of composite beams gradually increases, while the ultimate bearing capacity decreases with small amplitude. As a kind of green environmental protection material Rubber Aggregate concrete has the characteristics of good ductility, crack resistance is strong, energy consumption is obvious and good wear resistance.


2018 ◽  
Vol 26 (2) ◽  
pp. 20-34
Author(s):  
Fareed Hameed Majeed

This experimental work along with an analyticalanalysis is investigated.The behavior of simply supported steel beams with lightweight and normal concrete slab that have the same compressive strengthand slump was studied. Eight specimens tested under mid-point load and analysis by plastic analysis theory. Four of composite beams havea steel I-section beam with normal concreteslab and the other four with lightweight concrete slab. Different degrees of shear interaction were considered (100% to 40%). It was observed that there are no essential differences between the modes of failure that appeared in the tested composite beams with normal and lightweight concrete. Also, it was notedthat there is a decrease in the initial stiffness and also in the ultimate strength of the composite beams when the concrete of the flanges for the tested specimens was replaced from normal to lightweight concrete for different degrees of shear connections.The analytical results for all tested beam specimens, except that with normal concrete and 100% degree of shear interaction, gave overestimate results compared with those of experimental results.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1594 ◽  
Author(s):  
Xiaoke Li ◽  
Changyong Li ◽  
Minglei Zhao ◽  
Hui Yang ◽  
Siyi Zhou

In this paper, for a wide application of high-performance steel fiber reinforced expanded-shale lightweight concrete (SFRELC) in structures, the shear behavior of reinforced SFRELC beams without web reinforcements was experimentally investigated under a four-point bending test. Twenty-six beams were fabricated considering the influencing parameters of SFRELC strength, shear-span to depth ratio, longitudinal reinforcement ratio and the volume fraction of the steel fiber. The statistical analyses based on the foundational design principles and the experimental results are made based on the shear cracking resistance, the shear crack distribution and width, the mid-span deflection, the patterns of shear failure, and the shear capacity of the specimens. This confirms the effective strengthening of steel fibers on the shear performance of reinforced SFRELC beams without web reinforcements. Based on the modifications to the formulas of reinforced conventional concrete, lightweight-aggregate concrete or steel fiber reinforced concrete (SFRC) beams, and the validation against the experimental findings, formulas are proposed for the prediction of shear cracking resistance and shear capacity of reinforced SFRELC beams without web reinforcements. Finally, formulas are discussed for the reliable design of the shear capacity of reinforced SFRELC beams without web reinforcements.


2013 ◽  
Vol 12 (1) ◽  
pp. 187-194
Author(s):  
Tadeusz Urban ◽  
Michał Gołdyn ◽  
Łukasz Krawczyk

This paper presents the problem of load carrying capacity of the columns made of high-strength reinforced concrete which are separated by slab made of lightweight concrete. The experimental investigations of three models representing the internal connection between column and flat slab made of lightweight concrete of the strength tree times less than concrete strength of column are presented. The effort degree on the punching shear capacity stands for the variable parameter in the presented study. The performed study shows that there is no effect of this parameter on the effective concrete strength of the column.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 7079-7099
Author(s):  
Jianying Chen ◽  
Guojing He ◽  
Xiaodong (Alice) Wang ◽  
Jiejun Wang ◽  
Jin Yi ◽  
...  

Timber-concrete composite beams are a new type of structural element that is environmentally friendly. The structural efficiency of this kind of beam highly depends on the stiffness of the interlayer connection. The structural efficiency of the composite was evaluated by experimental and theoretical investigations performed on the relative horizontal slip and vertical uplift along the interlayer between composite’s timber and concrete slab. Differential equations were established based on a theoretical analysis of combination effects of interlayer slip and vertical uplift, by using deformation theory of elastics. Subsequently, the differential equations were solved and the magnitude of uplift force at the interlayer was obtained. It was concluded that the theoretical calculations were in good agreement with the results of experimentation.


Sign in / Sign up

Export Citation Format

Share Document