scholarly journals Penerapan Convolutional Neural Networks untuk Mesin Penerjemah Bahasa Daerah Minangkabau Berbasis Gambar

2021 ◽  
Vol 5 (6) ◽  
pp. 1153-1160
Author(s):  
Mayanda Mega Santoni ◽  
Nurul Chamidah ◽  
Desta Sandya Prasvita ◽  
Helena Nurramdhani Irmanda ◽  
Ria Astriratma ◽  
...  

One of efforts by the Indonesian people to defend the country is to preserve and to maintain the regional languages. The current era of modernity makes the regional language image become old-fashioned, so that most them are no longer spoken.  If it is ignored, then there will be a cultural identity crisis that causes regional languages to be vulnerable to extinction. Technological developments can be used as a way to preserve regional languages. Digital image-based artificial intelligence technology using machine learning methods such as machine translation can be used to answer the problems. This research will use Deep Learning method, namely Convolutional Neural Networks (CNN). Data of this research were 1300 alphabetic images, 5000 text images and 200 vocabularies of Minangkabau regional language. Alphabetic image data is used for the formation of the CNN classification model. This model is used for text image recognition, the results of which will be translated into regional languages. The accuracy of the CNN model is 98.97%, while the accuracy for text image recognition (OCR) is 50.72%. This low accuracy is due to the failure of segmentation on the letters i and j. However, the translation accuracy increases after the implementation of the Leveinstan Distance algorithm which can correct text classification errors, with an accuracy value of 75.78%. Therefore, this research has succeeded in implementing the Convolutional Neural Networks (CNN) method in identifying text in text images and the Leveinstan Distance method in translating Indonesian text into regional language texts.  

Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 624
Author(s):  
Stefan Rohrmanstorfer ◽  
Mikhail Komarov ◽  
Felix Mödritscher

With the always increasing amount of image data, it has become a necessity to automatically look for and process information in these images. As fashion is captured in images, the fashion sector provides the perfect foundation to be supported by the integration of a service or application that is built on an image classification model. In this article, the state of the art for image classification is analyzed and discussed. Based on the elaborated knowledge, four different approaches will be implemented to successfully extract features out of fashion data. For this purpose, a human-worn fashion dataset with 2567 images was created, but it was significantly enlarged by the performed image operations. The results show that convolutional neural networks are the undisputed standard for classifying images, and that TensorFlow is the best library to build them. Moreover, through the introduction of dropout layers, data augmentation and transfer learning, model overfitting was successfully prevented, and it was possible to incrementally improve the validation accuracy of the created dataset from an initial 69% to a final validation accuracy of 84%. More distinct apparel like trousers, shoes and hats were better classified than other upper body clothes.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yongjin Hu ◽  
Jin Tian ◽  
Jun Ma

Network traffic classification technologies could be used by attackers to implement network monitoring and then launch traffic analysis attacks or website fingerprint attacks. In order to prevent such attacks, a novel way to generate adversarial samples of network traffic from the perspective of the defender is proposed. By adding perturbation to the normal network traffic, a kind of adversarial network traffic is formed, which will cause misclassification when the attackers are implementing network traffic classification with deep convolutional neural networks (CNN) as a classification model. The paper uses the concept of adversarial samples in image recognition for reference to the field of network traffic classification and chooses several different methods to generate adversarial samples of network traffic. The experiment, in which the LeNet-5 CNN is selected as a classification model used by attackers and Vgg16 CNN is selected as the model to test the transferability of the adversarial network traffic generated, shows the effect of the adversarial network traffic samples.


2021 ◽  
Vol 11 (15) ◽  
pp. 6721
Author(s):  
Jinyeong Wang ◽  
Sanghwan Lee

In increasing manufacturing productivity with automated surface inspection in smart factories, the demand for machine vision is rising. Recently, convolutional neural networks (CNNs) have demonstrated outstanding performance and solved many problems in the field of computer vision. With that, many machine vision systems adopt CNNs to surface defect inspection. In this study, we developed an effective data augmentation method for grayscale images in CNN-based machine vision with mono cameras. Our method can apply to grayscale industrial images, and we demonstrated outstanding performance in the image classification and the object detection tasks. The main contributions of this study are as follows: (1) We propose a data augmentation method that can be performed when training CNNs with industrial images taken with mono cameras. (2) We demonstrate that image classification or object detection performance is better when training with the industrial image data augmented by the proposed method. Through the proposed method, many machine-vision-related problems using mono cameras can be effectively solved by using CNNs.


2021 ◽  
Vol 11 (13) ◽  
pp. 5931
Author(s):  
Ji’an You ◽  
Zhaozheng Hu ◽  
Chao Peng ◽  
Zhiqiang Wang

Large amounts of high-quality image data are the basis and premise of the high accuracy detection of objects in the field of convolutional neural networks (CNN). It is challenging to collect various high-quality ship image data based on the marine environment. A novel method based on CNN is proposed to generate a large number of high-quality ship images to address this. We obtained ship images with different perspectives and different sizes by adjusting the ships’ postures and sizes in three-dimensional (3D) simulation software, then 3D ship data were transformed into 2D ship image according to the principle of pinhole imaging. We selected specific experimental scenes as background images, and the target ships of the 2D ship images were superimposed onto the background images to generate “Simulation–Real” ship images (named SRS images hereafter). Additionally, an image annotation method based on SRS images was designed. Finally, the target detection algorithm based on CNN was used to train and test the generated SRS images. The proposed method is suitable for generating a large number of high-quality ship image samples and annotation data of corresponding ship images quickly to significantly improve the accuracy of ship detection. The annotation method proposed is superior to the annotation methods that label images with the image annotation software of Label-me and Label-img in terms of labeling the SRS images.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1263
Author(s):  
Zhaojun Wang ◽  
Jiangning Wang ◽  
Congtian Lin ◽  
Yan Han ◽  
Zhaosheng Wang ◽  
...  

With the rapid development of digital technology, bird images have become an important part of ornithology research data. However, due to the rapid growth of bird image data, it has become a major challenge to effectively process such a large amount of data. In recent years, deep convolutional neural networks (DCNNs) have shown great potential and effectiveness in a variety of tasks regarding the automatic processing of bird images. However, no research has been conducted on the recognition of habitat elements in bird images, which is of great help when extracting habitat information from bird images. Here, we demonstrate the recognition of habitat elements using four DCNN models trained end-to-end directly based on images. To carry out this research, an image database called Habitat Elements of Bird Images (HEOBs-10) and composed of 10 categories of habitat elements was built, making future benchmarks and evaluations possible. Experiments showed that good results can be obtained by all the tested models. ResNet-152-based models yielded the best test accuracy rate (95.52%); the AlexNet-based model yielded the lowest test accuracy rate (89.48%). We conclude that DCNNs could be efficient and useful for automatically identifying habitat elements from bird images, and we believe that the practical application of this technology will be helpful for studying the relationships between birds and habitat elements.


2021 ◽  
Vol 65 (1) ◽  
pp. 11-22
Author(s):  
Mengyao Lu ◽  
Shuwen Jiang ◽  
Cong Wang ◽  
Dong Chen ◽  
Tian’en Chen

HighlightsA classification model for the front and back sides of tobacco leaves was developed for application in industry.A tobacco leaf grading method that combines a CNN with double-branch integration was proposed.The A-ResNet network was proposed and compared with other classic CNN networks.The grading accuracy of eight different grades was 91.30% and the testing time was 82.180 ms, showing a relatively high classification accuracy and efficiency.Abstract. Flue-cured tobacco leaf grading is a key step in the production and processing of Chinese-style cigarette raw materials, directly affecting cigarette blend and quality stability. At present, manual grading of tobacco leaves is dominant in China, resulting in unsatisfactory grading quality and consuming considerable material and financial resources. In this study, for fast, accurate, and non-destructive tobacco leaf grading, 2,791 flue-cured tobacco leaves of eight different grades in south Anhui Province, China, were chosen as the study sample, and a tobacco leaf grading method that combines convolutional neural networks and double-branch integration was proposed. First, a classification model for the front and back sides of tobacco leaves was trained by transfer learning. Second, two processing methods (equal-scaled resizing and cropping) were used to obtain global images and local patches from the front sides of tobacco leaves. A global image-based tobacco leaf grading model was then developed using the proposed A-ResNet-65 network, and a local patch-based tobacco leaf grading model was developed using the ResNet-34 network. These two networks were compared with classic deep learning networks, such as VGGNet, GoogLeNet-V3, and ResNet. Finally, the grading results of the two grading models were integrated to realize tobacco leaf grading. The tobacco leaf classification accuracy of the final model, for eight different grades, was 91.30%, and grading of a single tobacco leaf required 82.180 ms. The proposed method achieved a relatively high grading accuracy and efficiency. It provides a method for industrial implementation of the tobacco leaf grading and offers a new approach for the quality grading of other agricultural products. Keywords: Convolutional neural network, Deep learning, Image classification, Transfer learning, Tobacco leaf grading


2020 ◽  
Vol 245 ◽  
pp. 06003
Author(s):  
Venkitesh Ayyar ◽  
Wahid Bhimji ◽  
Lisa Gerhardt ◽  
Sally Robertson ◽  
Zahra Ronaghi

The success of Convolutional Neural Networks (CNNs) in image classification has prompted efforts to study their use for classifying image data obtained in Particle Physics experiments. Here, we discuss our efforts to apply CNNs to 2D and 3D image data from particle physics experiments to classify signal from background. In this work we present an extensive convolutional neural architecture search, achieving high accuracy for signal/background discrimination for a HEP classification use-case based on simulated data from the Ice Cube neutrino observatory and an ATLAS-like detector. We demonstrate among other things that we can achieve the same accuracy as complex ResNet architectures with CNNs with less parameters, and present comparisons of computational requirements, training and inference times.


2017 ◽  
Vol 2 ◽  
pp. 24-33 ◽  
Author(s):  
Musbah Zaid Enweiji ◽  
Taras Lehinevych ◽  
Аndrey Glybovets

Cross language classification is an important task in multilingual learning, where documents in different languages often share the same set of categories. The main goal is to reduce the labeling cost of training classification model for each individual language. The novel approach by using Convolutional Neural Networks for multilingual language classification is proposed in this article. It learns representation of knowledge gained from languages. Moreover, current method works for new individual language, which was not used in training. The results of empirical study on large dataset of 21 languages demonstrate robustness and competitiveness of the presented approach.


Author(s):  
Zhengsu Chen ◽  
Jianwei Niu ◽  
Xuefeng Liu ◽  
Shaojie Tang

Convolutional neural networks (CNNs) have achieved remarkable success in image recognition. Although the internal patterns of the input images are effectively learned by the CNNs, these patterns only constitute a small proportion of useful patterns contained in the input images. This can be attributed to the fact that the CNNs will stop learning if the learned patterns are enough to make a correct classification. Network regularization methods like dropout and SpatialDropout can ease this problem. During training, they randomly drop the features. These dropout methods, in essence, change the patterns learned by the networks, and in turn, forces the networks to learn other patterns to make the correct classification. However, the above methods have an important drawback. Randomly dropping features is generally inefficient and can introduce unnecessary noise. To tackle this problem, we propose SelectScale. Instead of randomly dropping units, SelectScale selects the important features in networks and adjusts them during training. Using SelectScale, we improve the performance of CNNs on CIFAR and ImageNet.


Sign in / Sign up

Export Citation Format

Share Document