scholarly journals In vitro antibacterial activity of eravacycline against multidrug-resistant Acinetobacter baumannii isolates

2021 ◽  
Vol 25(5) (25(5)) ◽  
pp. 549-553
Author(s):  
Merve ATAMAN ◽  
Emel MATARACI KARA ◽  
Berna ÖZBEK ÇELİK
2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S314-S314
Author(s):  
Alita Miller ◽  
Sarah McLeod ◽  
Tarun Mathur ◽  
Ian Morrissey

Abstract Background The incidence of infections caused by multidrug-resistant Acinetobacter baumannii is increasing at an alarming rate in Southeast Asia and other parts of the world. Sulbactam (SUL) has intrinsic antibacterial activity against A. baumannii; however, the prevalence of β-lactamases in this species has limited its therapeutic use. Durlobactam (ETX2514, DUR) is a novel β-lactamase inhibitor with broad-spectrum activity against Ambler class A, C and D β-lactamases. DUR restores SUL in vitro activity against multidrug-resistant A. baumannii. Against >3,600 globally diverse, clinical isolates from 2012–2017, addition of 4 mg/L DUR reduced the SUL MIC90 from >32 to 2 mg/L. SUL-DUR is currently in Phase 3 clinical development for the treatment of infections caused by carbapenem-resistant Acinetobacter spp.The goal of this study was to determine the activity of SUL-DUR and comparator antibiotics (amikacin (AMK), ampicillin-sulbactam (AMP-SUL), cefoperazone-sulbactam (CFP-SUL) and meropenem (MEM)) against A. baumannii isolated from hospitalized patients in India. Methods A total of 121 clinical A. baumannii isolates from multiple hospital settings and infection sources were collected between 2016–2019 from six geographically diverse hospitals in India. Species identification was performed by MALDI-TOF. Susceptibility of these isolates to SUL-DUR (10µg/10µg) and comparator antibiotics was determined by disk diffusion using CLSI methodology and interpretive criteria, except for CFP-SUL, for which resistance was defined using breakpoints from the CFP-SUL package insert. Results As shown in Table 1, resistance of this collection of isolates to marketed agents was extremely high. In contrast, based on preliminary breakpoint criteria, only 11.5% of isolates were resistant to SUL-DUR. Conclusion The in vitro antibacterial activity of SUL-DUR was significantly more potent than comparator agents against multidrug-resistant A. baumannii isolates collected from diverse sites in India. These data support the continued development of SUL-DUR for the treatment of antibiotic-resistant infections caused by A. baumannii. Disclosures All authors: No reported disclosures.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S662-S662
Author(s):  
Alita Miller ◽  
Sarah McLeod ◽  
Samir Moussa ◽  
Meredith Hackel

Abstract Background The incidence of infections caused by multidrug-resistant (MDR) Acinetobacter baumannii (Ab) is increasing at an alarming rate in certain regions of the world, including the Middle East. Sulbactam (SUL) has intrinsic antibacterial activity against Ab; however, the prevalence of β-lactamases in Ab has limited its therapeutic utility. Durlobactam (DUR, formerly ETX2514) is a diazabicyclooctenone β-lactamase inhibitor with broad-spectrum activity against Ambler class A, C and D β-lactamases that restores SUL activity in vitro against MDR Ab. SUL-DUR is an antibiotic designed to treat serious infections caused by Acinetobacter, including multidrug-resistant strains, that is currently in Phase 3 clinical development. In global surveillance studies of >3600 isolates from 2012-2017, the MIC90 of SUL-DUR was 2 mg/L. Although surveillance systems to monitor MDR infections in the Middle East are currently being established, quantitative, prevalence-based data are not yet available. Therefore, the potency of SUL-DUR was determined against 190 recent, diverse Ab clinical isolates from this region. Methods 190 Ab isolates were collected between 2016 - 2018 from medical centers located in Israel (N = 47), Jordan (N = 36), Qatar (N = 13), Kuwait (N = 42), Lebanon (N = 8), Saudi Arabia (N = 24) and United Arab Emirates (N = 20). Seventy-five percent and 20.5% of these isolates were from respiratory and blood stream infections, respectively. Susceptibility to SUL-DUR and comparator agents was performed according to CLSI guidelines, and data analysis was performed using CLSI and EUCAST breakpoint criteria where available. Results This collection of isolates was 86% carbapenem-resistant and 90% sulbactam-resistant (based on a breakpoint of 4 mg/L). The addition of SUL-DUR (fixed at 4 mg/L) decreased the sulbactam MIC90 from 64 mg/L to 4 mg/L. Only 3 isolates (1.6%) had SUL-DUR MIC values of > 4 mg/L. This potency was consistent across countries, sources of infection and subsets of resistance phenotypes. Conclusion SUL-DUR demonstrated potent antibacterial activity against recent clinical isolates of Ab from the Middle East, including MDR isolates. These data support the global development of SUL-DUR for the treatment of MDR Ab infections. Disclosures Alita Miller, PhD, Entasis Therapeutics (Employee) Sarah McLeod, PhD, Entasis Therapeutics (Employee) Samir Moussa, PhD, Entasis Therapeutics (Employee)


Author(s):  
Yucheng Cao ◽  
Kaiyi Wang ◽  
Jiali Wang ◽  
Haoran Cheng ◽  
Mengxin Ma ◽  
...  

Aim: With the increasing abuse of antibacterial drugs, multidrug-resistant bacteria have become a burden on human health and the healthcare system. To find alternative compounds effective against hospital-acquired methicillin-resistant Staphylococcus aureus (HA-MRSA), novel derivatives of ocotillol were synthesized. Methods & Results: Ocotillol derivatives with polycyclic nitrogen-containing groups were synthesized and evaluated for in vitro antibacterial activity. Compounds 36–39 exhibited potent antibacterial activity against hospital-acquired MRSA, with MIC = 8–64 μg/ml. Additionally, a combination of compound 37 and the commercially available antibiotic kanamycin showed synergistic inhibitory effects, with a fractional inhibitory concentration index of ≤0.375. Conclusion: Compound 37 has a strong inhibitory effect, and this derivative has potential for use as a pharmacological tool to explore antibacterial mechanisms.


2020 ◽  
Vol 75 (7) ◽  
pp. 1840-1849 ◽  
Author(s):  
Mercedes Delgado-Valverde ◽  
M del Carmen Conejo ◽  
Lara Serrano ◽  
Felipe Fernández-Cuenca ◽  
Álvaro Pascual

Abstract Background Cefiderocol is a novel siderophore cephalosporin, developed for activity against MDR Gram-negative bacilli (MDR-GNB). Objectives To assess the in vitro antibacterial activity of cefiderocol against a collection of MDR-GNB clinical isolates from hospitals in southern Spain. Methods Two hundred and thirty-one isolates of successful clones were tested: 125 Enterobacterales (121 ESBL- and/or carbapenemase-producing Klebsiella pneumoniae and 4 carbapenemase-producing Enterobacter cloacae), 80 Acinetobacter baumannii, 6 Pseudomonas aeruginosa and 20 Stenotrophomonas maltophilia. Ceftolozane/tazobactam, ceftazidime, ceftazidime/avibactam, cefepime, aztreonam, meropenem, amikacin, ciprofloxacin, colistin and tigecycline were used as comparators against Enterobacterales, P. aeruginosa and A. baumannii. Minocycline, levofloxacin and trimethoprim/sulfamethoxazole were studied against S. maltophilia instead of aztreonam, ciprofloxacin and cefepime. MICs were determined by broth microdilution according to CLSI guidelines. MIC determination was performed in CAMHB for all antimicrobials except cefiderocol, where iron-depleted CAMHB was used. Results Cefiderocol showed potent in vitro activity against the isolates analysed. MIC50 and MIC90 values were in the ranges 0.125–8 mg/L and 0.5–8 mg/L, respectively, and 98% of isolates were inhibited at ≤4 mg/L. Only five isolates showed cefiderocol MICs of >4 mg/L: three ST2/OXA-24/40-producing A. baumannii, one ST114/VIM-1-producing E. cloacae and one ST114/VIM-1 + OXA-48-producing E. cloacae. All KPC-3-producing K. pneumoniae were susceptible to cefiderocol, even those resistant to ceftazidime/avibactam. P. aeruginosa isolates showed cefiderocol MICs of <4 mg/L, including those resistant to ceftolozane/tazobactam. S. maltophilia isolates displayed cefiderocol MICs of <4 mg/L, including those resistant to levofloxacin and/or trimethoprim/sulfamethoxazole. Conclusions Cefiderocol showed excellent activity against MDR-GNB, including carbapenem-resistant isolates, and was the most active antimicrobial tested against this collection.


Author(s):  
Jacinda C. Abdul-Mutakabbir ◽  
Logan Nguyen ◽  
Philip T. Maassen ◽  
Kyle C. Stamper ◽  
Razieh Kebriaei ◽  
...  

Cefiderocol (CFDC), a novel siderophore cephalosporin, demonstrates strong activity against multidrug-resistant (MDR) Acinetobacter baumannii. Limited studies have evaluated CFDC alone and in combination with other Gram-negative antibiotics against MDR A. baumannii isolates. Susceptibility testing revealed lower CFDC minimum inhibitory concentration (MIC) values than the comparator Gram-negative agents (87% of MICs ≤ 4mg/L). Six isolates, with elevated CFDC MICs (16-32 mg/L), were selected for further experiments. Time-kill analyses presented with synergistic activity and beta-lactamase inhibitors increased CFDC susceptibility in each of the isolates.


Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1776 ◽  
Author(s):  
Javier Campanini-Salinas ◽  
Juan Andrades-Lagos ◽  
Gerardo Gonzalez Rocha ◽  
Duane Choquesillo-Lazarte ◽  
Soledad Bollo Dragnic ◽  
...  

A rapid emergence of resistant bacteria is occurring worldwide, endangering the efficacy of antibiotics and reducing the therapeutic arsenal available for treatment of infectious diseases. In the present study, we developed a new class of compounds with antibacterial activity obtained by a simple, two step synthesis and screened the products for in vitro antibacterial activity against ATCC® strains using the broth microdilution method. The compounds exhibited minimum inhibitory concentrations (MIC) of 1–32 μg/mL against Gram-positive ATCC® strains. The structure–activity relationship indicated that the thiophenol ring is essential for antibacterial activity and the substituents on the thiophenol ring module, for antibacterial activity. The most promising compounds detected by screening were tested against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VREF) clinical isolates. We found remarkable activity against VREF for compounds 7 and 16, were the MIC50/90 were 2/4 µg/mL and 4/4 µg/mL, respectively, while for vancomycin the MIC50/90 was 256/512 µg/mL. Neither compound affected cell viability in any of the mammalian cell lines at any of the concentrations tested. These in vitro data show that compounds 7 and 16 have an interesting potential to be developed as new antibacterial drugs against infections caused by VREF.


Sign in / Sign up

Export Citation Format

Share Document