scholarly journals Partitioning a split graph into induced subgraphs isomorphic to the path of order 3.

Author(s):  
O. I. Duginov

The study of the computational complexity of problems on graphs is an urgent problem. We show that the problem of deciding whether the vertex set of a given split graph of order 3n can be partitioned into induced subgraphs isomorphic to P3 is a polynomially solvable problem. We develop a polynomial-time algorithm based on the method of augmenting graphs. The developed efficient algorithm can be used for solving team formation problems.

2015 ◽  
Vol 14 (09) ◽  
pp. 1540011 ◽  
Author(s):  
I. Bermejo ◽  
I. García-Marco ◽  
E. Reyes

Our purpose is to study the family of simple undirected graphs whose toric ideal is a complete intersection from both an algorithmic and a combinatorial point of view. We obtain a polynomial time algorithm that, given a graph G, checks whether its toric ideal PG is a complete intersection or not. Whenever PG is a complete intersection, the algorithm also returns a minimal set of generators of PG. Moreover, we prove that if G is a connected graph and PG is a complete intersection, then there exist two induced subgraphs R and C of G such that the vertex set V(G) of G is the disjoint union of V(R) and V(C), where R is a bipartite ring graph and C is either the empty graph, an odd primitive cycle, or consists of two odd primitive cycles properly connected. Finally, if R is 2-connected and C is connected, we list the families of graphs whose toric ideals are complete intersection.


2011 ◽  
Vol 03 (03) ◽  
pp. 323-336 ◽  
Author(s):  
FANICA GAVRIL

A circle n-gon is the region between n or fewer non-crossing chords of a circle, no chord connecting the arcs between two other chords; the sides of a circle n-gon are either chords or arcs of the circle. A circle n-gon graph is the intersection graph of a family of circle n-gons in a circle. The family of circle trapezoid graphs is exactly the family of circle 2-gon graphs and the family of circle graphs is exactly the family of circle 1-gon graphs. The family of circle n-gon graphs contains the polygon-circle graphs which have an intersection representation by circle polygons, each polygon with at most n chords. We describe a polynomial time algorithm to find a minimum weight feedback vertex set, or equivalently, a maximum weight induced forest, in a circle n-gon graph with positive weights, when its intersection model by n-gon-interval-filaments is given.


1994 ◽  
Vol 03 (03) ◽  
pp. 395-405
Author(s):  
J. HARALAMBIDES ◽  
S. TRAGOUDAS

The problem of partitioning the elements of a graph G=(V, E) into two equal size sets A and B that share at most d elements such that the total number of edges (u, v), u∈A−B, v∈B−A is minimized, arises in the areas of Hypermedia Organization, Network Integrity, and VLSI Layout. We formulate the problem in terms of element duplication, where each element c∈A∩B is substituted by two copies c′∈A and c″∈B As a result, edges incident to c′ or c″ need not count in the cost of the partition. We show that this partitioning problem is NP-hard in general, and we present a solution which utilizes an optimal polynomial time algorithm for the special case where G is a series-parallel graph. We also discuss special other cases where the partitioning problem or variations are polynomially solvable.


2007 ◽  
Vol 72 (4) ◽  
pp. 1197-1203
Author(s):  
Rick Statman

AbstractWe consider three problems concerning alpha conversion of closed terms (combinators).(1) Given a combinator M find the an alpha convert of M with a smallest number of distinct variables.(2) Given two alpha convertible combinators M and N find a shortest alpha conversion of M to N.(3) Given two alpha convertible combinators M and N find an alpha conversion of M to N which uses the smallest number of variables possible along the way.We obtain the following results.(1) There is a polynomial time algorithm for solving problem (1). It is reducible to vertex coloring of chordal graphs.(2) Problem (2) is co-NP complete (in recognition form). The general feedback vertex set problem for digraphs is reducible to problem (2).(3) At most one variable besides those occurring in both M and N is necessary. This appears to be the folklore but the proof is not familiar. A polynomial time algorithm for the alpha conversion of M to N using at most one extra variable is given.There is a tradeoff between solutions to problem (2) and problem (3) which we do not fully understand.


2005 ◽  
Vol 16 (05) ◽  
pp. 913-928 ◽  
Author(s):  
PIOTR FALISZEWSKI ◽  
LANE A. HEMASPAANDRA

Informally put, the semifeasible sets are the class of sets having a polynomial-time algorithm that, given as input any two strings of which at least one belongs to the set, will choose one that does belong to the set. We provide a tutorial overview of the advice complexity of the semifeasible sets. No previous familiarity with either the semifeasible sets or advice complexity will be assumed, and when we include proofs we will try to make the material as accessible as possible via providing intuitive, informal presentations. Karp and Lipton introduced advice complexity about a quarter of a century ago.18 Advice complexity asks, for a given power of interpreter, how many bits of "help" suffice to accept a given set. Thus, this is a notion that contains aspects both of descriptional/informational complexity and of computational complexity. We will see that for some powers of interpreter the (worst-case) complexity of the semifeasible sets is known right down to the bit (and beyond), but that for the most central power of interpreter—deterministic polynomial time—the complexity is currently known only to be at least linear and at most quadratic. While overviewing the advice complexity of the semifeasible sets, we will stress also the issue of whether the functions at the core of semifeasibility—so-called selector functions—can without cost be chosen to possess such algebraic properties as commutativity and associativity. We will see that this is relevant, in ways both potential and actual, to the study of the advice complexity of the semifeasible sets.


2010 ◽  
Vol 21 (06) ◽  
pp. 905-924 ◽  
Author(s):  
MAREK KARPIŃSKI ◽  
ANDRZEJ RUCIŃSKI ◽  
EDYTA SZYMAŃSKA

In this paper we consider the computational complexity of deciding the existence of a perfect matching in certain classes of dense k-uniform hypergraphs. It has been known that the perfect matching problem for the classes of hypergraphs H with minimum ((k - 1)–wise) vertex degreeδ(H) at least c|V(H)| is NP-complete for [Formula: see text] and trivial for c ≥ ½, leaving the status of the problem with c in the interval [Formula: see text] widely open. In this paper we show, somehow surprisingly, that ½ is not the threshold for tractability of the perfect matching problem, and prove the existence of an ε > 0 such that the perfect matching problem for the class of hypergraphs H with δ(H) ≥ (½ - ε)|V(H)| is solvable in polynomial time. This seems to be the first polynomial time algorithm for the perfect matching problem on hypergraphs for which the existence problem is nontrivial. In addition, we consider parallel complexity of the problem, which could be also of independent interest.


2010 ◽  
Vol 20 (01) ◽  
pp. 89-104 ◽  
Author(s):  
BORIS ARONOV ◽  
TETSUO ASANO ◽  
STEFAN FUNKE

Consider a set X of points in the plane and a set E of non-crossing segments with endpoints in X. One can efficiently compute the triangulation of the convex hull of the points, which uses X as the vertex set, respects E, and maximizes the minimum internal angle of a triangle. In this paper we consider a natural extension of this problem: Given in addition a Steiner pointp, determine the optimal location of p and a triangulation of X ∪ {p} respecting E, which is best among all triangulations and placements of p in terms of maximizing the minimum internal angle of a triangle. We present a polynomial-time algorithm for this problem and then extend our solution to handle any constant number of Steiner points.


2007 ◽  
Vol 17 (02) ◽  
pp. 289-328 ◽  
Author(s):  
LAURA CIOBANU

We say the endomorphism problem is solvable for an element W in a free group F if it can be decided effectively whether, given U in F, there is an endomorphism ϕ of F sending W to U. This work analyzes an approach due to Edmunds and improved by Sims. Here we prove that the approach provides an efficient algorithm for solving the endomorphism problem when W is a two-generator word. We show that when W is a two-generator word this algorithm solves the problem in time polynomial in the length of U. This result gives a polynomial-time algorithm for solving, in free groups, two-variable equations in which all the variables occur on one side of the equality and all the constants on the other side.


2015 ◽  
Vol 14 (05) ◽  
pp. 1111-1128 ◽  
Author(s):  
Özgür Özpeynirci ◽  
Cansu Kandemir

In this study, we work on the order picking problem (OPP) in a specially designed warehouse with a single picker. Ratliff and Rosenthal [Operations Research31(3) (1983) 507–521] show that the special design of the warehouse and use of one picker lead to a polynomially solvable case. We address the multiobjective version of this special case and investigate the properties of the nondominated points. We develop an exact algorithm that finds any nondominated point and present an illustrative example. Finally we conduct a computational test and report the results.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Fengwei Li ◽  
Xiaoyan Zhang ◽  
Qingfang Ye ◽  
Yuefang Sun

The scattering number and isolated scattering number of a graph have been introduced in relation to Hamiltonian properties and network vulnerability, and the isolated scattering number plays an important role in characterizing graphs with a fractional 1-factor. Here we investigate the computational complexity of one variant, namely, the weighted isolated scattering number. We give a polynomial time algorithm to compute this parameter of interval graphs, an important subclass of perfect graphs.


Sign in / Sign up

Export Citation Format

Share Document