scholarly journals Potensi Simpanan Karbon pada Tegakan Revegetasi Lahan Pasca Tambang PT Holcim Indonesia Tbk

2020 ◽  
Vol 11 (2) ◽  
pp. 89-95
Author(s):  
Omo Rusdiana ◽  
Syidik Fahmi

Global warming is a gradual increase in the average temperature of the Earth’s atmosphere caused by the increased volumes of greenhouse gases such as carbon dioxide, methane, and nitrous oxide. Greenhouse gases is trapped inside the atmosphere and caused UV radiation difficulty passing through Earth’s atmosphere, a processed is often referred to as the greenhouse effect. Reclamation and revegetation activities were expected could decrease the greenhouse effect. The aims of the research is to estimate total carbon stock in Pine Forest age 2005 or 11 years and 2012 or 4 years, and also to compare the result with former research in post mining revegetation site PT Holcim Indonesia Tbk. Biomass measurement of trees, poles, and saplings is conducted with non-destructive methods meanwhile biomass measurements of understorey, litter, and necromassa used destructive methods. The result showed that the value of biomass and carbon stock on the 2005 pine stand is acquired 75.31 tons/ha and 35.39 tons/ha. The value of the biomass and carbon stock on the 2012 pine stand is acquired 12.72 tons/ha and 5.98 ton/ha or increased from the previous year's measurement. Increasing of biomass content and carbon stocks is caused several factors such as increasing of diameter increment dan site quality. Keywords: biomass, carbon, reclamation

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Michal Zgrzebnicki ◽  
Nikola Krauze ◽  
Andżelika Gęsikiewicz-Puchalska ◽  
Joanna Kapica-Kozar ◽  
Ewa Piróg ◽  
...  

Greenhouse effect is responsible for keeping average temperature of Earth’s atmosphere at level of about 288 K. Its intensification leads to warming of our planet and may contribute to adverse changes in the environment. The most important pollution intensifying greenhouse effect is anthropogenic carbon dioxide. This particular gas absorbs secondary infrared radiation, which in the end leads to an increase of average temperature of Earth’s atmosphere. Main source of CO2 is burning of fossil fuels, like oil, natural gas, and coal. Therefore, to reduce its emission, a special CO2 capture and storage technology is required. Carbonaceous materials are promising materials for CO2 sorbents. Thus multiwalled carbon nanotubes, due to the lack of impurities like ash in activated carbons, were chosen as a model material for investigation of acid treatment impact on CO2 uptake. Remarkable 43% enhancement of CO2 sorption capacity was achieved at 273 K and relative pressure of 0.95. Samples were also thoroughly characterized in terms of texture (specific surface area measurement, transmission electron microscope) and chemical composition (X-ray photoelectron spectroscopy).


2011 ◽  
Vol 28 (3) ◽  
pp. 161-165 ◽  
Author(s):  
Roger A. Williams ◽  
Yuhua Tao

Abstract A carbon management diagram for use in oak-hickory forests in southern Ohio has been developed to allow easier quantification of total forest carbon stock. The total carbon stock is positively correlated to basal area and average stand diameter but poorly correlated to the number of trees per acre. The total amount of carbon stored in these forests is going to be influenced by age and site quality to the extent that age and site influence basal area and the average tree size. Accordingly, not all stands considered to be fully to overstocked store the most carbon. Rather, it is a combination of basal area and average tree size that determines the total carbon stored, with the carbon stock in the forest increasing with an increase in both basal area and average tree diameter. Examples illustrating the use of the diagram are presented for two oak forests on oak site indexes 60 and 80. Both forests are overstocked at age 100 years, but the forest on site index 60 stores 77 tons/ac of total carbon compared with 103 tons/ac on site index 80.


2016 ◽  
Author(s):  
Debra Wunch ◽  
Paul O. Wennberg ◽  
Gregory Osterman ◽  
Brendan Fisher ◽  
Bret Naylor ◽  
...  

Abstract. NASA's Orbiting Carbon Observatory-2 (OCO-2) has been measuring carbon dioxide column-averaged dry air mole fractions, XCO2, in the Earth’s atmosphere for almost two years. In this paper, we describe the comparisons between the OCO-2 version 7Br retrievals and XCO2 estimates from OCO-2's primary ground-based validation network: the Total Carbon Column Observing Network (TCCON). The OCO-2 XCO2 retrievals, after bias correction, agree well globally with the TCCON for nadir, glint, and target observations, with median differences less than 0.5 ppm and RMS differences typically below 1.5 ppm. Target observations over TCCON stations correlate best with the TCCON data (R2 = 0.83) on a global scale. At local scales, the target comparisons reveal residual biases likely related to surface properties and aerosol scattering. It is thus crucial to continue measurement comparisons with TCCON to monitor and evaluate the OCO-2 XCO2 data quality throughout its mission.


2021 ◽  
Vol 16 (3) ◽  
pp. 32-37
Author(s):  
Salavat Suleymanov ◽  
Svetlana Sochneva ◽  
Nikolay Trofimov ◽  
Elmir Gallyamov

The scientific article provides an analysis of data on the dynamics of changes in the concentration of carbon dioxide in the Earth’s atmosphere, its relationship with an increase in the average temperature of the Earth’s surface and further measures related to the decarbonization of industry. When analyzing theoretical materials, it was revealed that the concentration of carbon dioxide in the Earth’s atmosphere increased from 270 to 419 parts per million (ppm), which ultimately led to an increase in temperature on the planet by 1.1°C over the past 150 years. If the current rate of growth in the concentration of greenhouse gases in the atmosphere is maintained, the increase in the average global temperature may exceed 4°C, which will have catastrophic consequences. In terms of CO2 emissions, China ranks first in the world (28,8% of the total global emissions), followed by the United States (14,5%). Next are the European Union (9,7%), India (7,3%), Russia (4.5%) and Japan (3,3%), etc. To keep the average temperature rise within 1.5°C, the share of renewable energy sources in electricity generation should increase in 2050 to at least 70-85 percent. At the same time, the share of natural gas, provided that technologies for capturing and storing CO2 are used, will decrease to 8% (from 3 to 11% according to different scenarios), while the share of coal will decrease to almost 0% (0-2%)


2017 ◽  
Vol 10 (6) ◽  
pp. 2209-2238 ◽  
Author(s):  
Debra Wunch ◽  
Paul O. Wennberg ◽  
Gregory Osterman ◽  
Brendan Fisher ◽  
Bret Naylor ◽  
...  

Abstract. NASA's Orbiting Carbon Observatory-2 (OCO-2) has been measuring carbon dioxide column-averaged dry-air mole fraction, XCO2, in the Earth's atmosphere for over 2 years. In this paper, we describe the comparisons between the first major release of the OCO-2 retrieval algorithm (B7r) and XCO2 from OCO-2's primary ground-based validation network: the Total Carbon Column Observing Network (TCCON). The OCO-2 XCO2 retrievals, after filtering and bias correction, agree well when aggregated around and coincident with TCCON data in nadir, glint, and target observation modes, with absolute median differences less than 0.4 ppm and RMS differences less than 1.5 ppm. After bias correction, residual biases remain. These biases appear to depend on latitude, surface properties, and scattering by aerosols. It is thus crucial to continue measurement comparisons with TCCON to monitor and evaluate the OCO-2 XCO2 data quality throughout its mission.


Sign in / Sign up

Export Citation Format

Share Document