scholarly journals Spatial and Temporal Analysis of El Niño Impact on Land and Forest Fire in Kalimantan and Sumatra

Agromet ◽  
2021 ◽  
Vol 35 (1) ◽  
pp. 1-10
Author(s):  
Sri Nurdiati ◽  
Ardhasena Sopaheluwakan ◽  
Pandu Septiawan

Land and forest fires in Kalimantan and Sumatra, Indonesia occurred annually at different magnitude and duration. Climate and sea interaction, like El Niño, influences the severity of dry seasons preceding the fires. However, research on the influence of El Niño intensity to fire regime in Kalimantan and Sumatra is limited. Therefore, this study aims to analyze the spatial and temporal patterns of the effects of El Niño intensity on land and forest fires in fire-prone provinces in Indonesia. Here, we applied the empirical orthogonal function analysis based on singular value decomposition to determine the dominant patterns of hotspots and rainfall data that evolve spatially and temporally. For analysis, the study required the following data: fire hotspots, dry-spell, and rainfall for period 2001-2019. This study revealed that El Niño intensity had a different impacts for each province. Generally, El Niño will influence the severity of forest fire events in Indonesia. However, we found that the impact of El Niño intensity varied for Kalimantan, South Sumatra, and Riau Province. Kalimantan was the most sensitive province to the El Niño event. The duration and number of hotspots in Kalimantan increased significantly even in moderate El Niño event. This was different for South Sumatra, where the duration and number of hotspots only increased significantly when a strong El Niño event occurred.

2019 ◽  
Vol 3 (1) ◽  
pp. 16
Author(s):  
Sumaryati Sumaryati ◽  
Nani Cholianawati ◽  
Asri Indrawati

<p>It has been analyzed impact of forest fire on the air quality using PM10 parameter and visibility during 2000 – 2014 in Palangka Raya, Central Kalimantan province. Palangka Raya is an affected forest fire area with a monsoonal rainfall type which has one peak of the rainy season in January and one peak of the dry season in August. Drought condition has an impact on rising forest fire intensity causes increasing of PM10 concentration and decresing of visibility in July to November moreover when there is an El Niño phenomenon. The result of PM10 analysis shows that the air quality index in Palangka Raya during December - June is in a good  level category and still below the ambient air quality standard with an average concentration of 19 µg/m3. The impact of forest fire on declining air quality due to increasing of PM10 concentration occurred in July – November with an average concentration rising of 129 µg/m3. The El Niño phenomenon rises the PM10 concentration due to increasing of forest fires, but the increasing of PM10 is not comparable to the strength of El Niño, because of combustion condition and and human activities that play a role in forest fires. The worst impact of El Niño occurred in 2002, although the El Niño strength was only moderate, which is a half the time from July to November Palangka Raya covered air quality with dangerous levels with PM10 concentrations of more than µg/m3. A high PM10 concentration environment reduces the visibility significantly, which is visibility in the no fire condition about 8 km, but when the huge forest fire the visibility drops to 0.1 km.</p>


2007 ◽  
Vol 7 (14) ◽  
pp. 3713-3736 ◽  
Author(s):  
B. N. Duncan ◽  
S. E. Strahan ◽  
Y. Yoshida ◽  
S. D. Steenrod ◽  
N. Livesey

Abstract. We present a modeling study of the troposphere-to-stratosphere transport (TST) of pollution from major biomass burning regions to the tropical upper troposphere and lower stratosphere (UT/LS). TST occurs predominately through 1) slow ascent in the tropical tropopause layer (TTL) to the LS and 2) quasi-horizontal exchange to the lowermost stratosphere (LMS). We show that biomass burning pollution regularly and significantly impacts the composition of the TTL, LS, and LMS. Carbon monoxide (CO) in the LS in our simulation and data from the Aura Microwave Limb Sounder (MLS) shows an annual oscillation in its composition that results from the interaction of an annual oscillation in slow ascent from the TTL to the LS and seasonal variations in sources, including a semi-annual oscillation in CO from biomass burning. The impacts of CO sources that peak when ascent is seasonally low are damped (e.g. Southern Hemisphere biomass burning) and vice-versa for sources that peak when ascent is seasonally high (e.g. extra-tropical fossil fuels). Interannual variation of CO in the UT/LS is caused primarily by year-to-year variations in biomass burning and the locations of deep convection. During our study period, 1994–1998, we find that the highest concentrations of CO in the UT/LS occurred during the strong 1997–1998 El Niño event for two reasons: i. tropical deep convection shifted to the eastern Pacific Ocean, closer to South American and African CO sources, and ii. emissions from Indonesian biomass burning were higher. This extreme event can be seen as an upper bound on the impact of biomass burning pollution on the UT/LS. We estimate that the 1997 Indonesian wildfires increased CO in the entire TTL and tropical LS (>60 mb) by more than 40% and 10%, respectively, for several months. Zonal mean ozone increased and the hydroxyl radical decreased by as much as 20%, increasing the lifetimes and, subsequently TST, of trace gases. Our results indicate that the impact of biomass burning pollution on the UT/LS is likely greatest during an El Niño event due to favorable dynamics and historically higher burning rates.


2021 ◽  
Vol 8 (4) ◽  
pp. 205-210
Author(s):  
Chang-Woong Shin ◽  
Dimitri Gutiérrez

The northern coast of Peru is a region that can rapidly detect the impact of an El Niño. To investigate the effects of the 2015-2016 El Niño on the oceanographic environment of the northern coast of Peru, the temperature and current data obtained from moored equipment at an oil platform were analyzed. Strong coastal along-shore currents of more than 0.60 m·s-1 were observed three times, although the mean current speed was 0.10 m·s-1 flowing toward the south-southwest. After the first strong current, the bottom temperature increased and the mixed layer deepened and remained there during the El Niño event. The temperature reached a maximum after the strong coastal current, then decreased gradually. An analysis of wind and sea surface height anomalies revealed that the coastal strong current was caused by Kelvin waves and the deepening of the mixed layer was not related to local winds, but to coastal Kelvin waves from the equator during the El Niño event.


2008 ◽  
Vol 8 (7) ◽  
pp. 1911-1924 ◽  
Author(s):  
Y. Le Page ◽  
J. M. C. Pereira ◽  
R. Trigo ◽  
C. da Camara ◽  
D. Oom ◽  
...  

Abstract. Vegetation fires have been acknowledged as an environmental process of global scale, which affects the chemical composition of the troposphere, and has profound ecological and climatic impacts. However, considerable uncertainty remains, especially concerning intra and inter-annual variability of fire incidence. The main goals of our global-scale study were to characterise spatial-temporal patterns of fire activity, to identify broad geographical areas with similar vegetation fire dynamics, and to analyse the relationship between fire activity and the El Niño-Southern Oscillation. This study relies on 10 years (mid 1996–mid 2006) of screened European Space Agency World Fire Atlas (WFA) data, obtained from Along Track Scanning Radiometer (ATSR) and Advanced ATSR (AATSR) imagery. Empirical Orthogonal Function analysis was used to reduce the dimensionality of the dataset. Regions of homogeneous fire dynamics were identified with cluster analysis, and interpreted based on their eco-climatic characteristics. The impact of 1997–1998 El Niño is clearly dominant over the study period, causing increased fire activity in a variety of regions and ecosystems, with variable timing. Overall, this study provides the first global decadal assessment of spatial-temporal fire variability and confirms the usefulness of the screened WFA for global fire ecoclimatology research.


2011 ◽  
Vol 24 (24) ◽  
pp. 6486-6500 ◽  
Author(s):  
Cheng Qian ◽  
Zhaohua Wu ◽  
Congbin Fu ◽  
Dongxiao Wang

Abstract This study investigates changes in the frequency of ENSO, especially the prolonged 1990–95 El Niño event, in the context of secular changes in the annual cycle, ENSO interannual variability, and background mean state of the tropical eastern Pacific sea surface temperature (SST). The ensemble empirical mode decomposition (EEMD) method is applied to isolate those components from the Niño-3 SST index for the period 1880–2008. It is shown that the annual cycle [referred to as a refined modulated annual cycle (MAC)] has strong interannual modulation and secular change in both amplitude and phase: a clear transition from increasing to decreasing amplitude around 1947/48, with both linear trends before and after this turning point statistically significant and the amplitude decreasing by 14% since then, and a significant phase delay trend for the period 1881–1938, but hardly any thereafter. A clear transition from significant deceasing to increasing by about 30% in the amplitude of the ENSO interannual variability around 1937 is also found. When El Niño events are represented as the collective interannual variability, their frequency is found to be almost equivalent to that of La Niña events after 1976. A method for conducting synthetic experiments based on time series analysis further reveals that the apparent prolonged 1990–95 El Niño event was not caused solely by ENSO interannual variability. Rather, the 1991/92 warm period is attributable to an interannual variation superimposed by change in the background mean state; the 1993 warm period is attributable to change in the mean state; and the 1994/95 warm period is attributable to a residual annual cycle, which cannot be fully excluded by a 30-yr mean annual cycle approach. The impact that changing base periods has on the classification of ENSO events and possible solutions is also discussed.


2010 ◽  
Vol 23 (15) ◽  
pp. 4080-4095 ◽  
Author(s):  
Shu-Chih Yang ◽  
Michele Rienecker ◽  
Christian Keppenne

Abstract This study investigates the impact of four different ocean analyses on coupled forecasts of the 2006 El Niño event. Forecasts initialized in June 2006 using ocean analyses from an assimilation that uses flow-dependent background error covariances are compared with those using static error covariances that are not flow dependent. The flow-dependent error covariances reflect the error structures related to the background ENSO instability and are generated by the coupled breeding method. The ocean analyses used in this study result from the assimilation of temperature and salinity, with the salinity data available from Argo floats. Of the analyses, the one using information from the coupled bred vector (BV) replicates the observed equatorial long wave propagation best and exhibits more warming features leading to the 2006 El Niño event. The forecasts initialized from the BV-based analysis agree best with the observations in terms of the growth of the warm anomaly through two warming phases. This better performance is related to the impact of the salinity analysis on the state evolution in the equatorial thermocline. The early warming is traced back to salinity differences in the upper ocean of the equatorial central Pacific, while the second warming, corresponding to the mature phase, is associated with the effect of the salinity assimilation on the depth of the thermocline in the western equatorial Pacific. The series of forecast experiments conducted here show that the structure of the salinity in the initial conditions is important to the forecasts of the extension of the warm pool and the evolution of the 2006 El Niño event.


2018 ◽  
Vol 2 (3) ◽  
Author(s):  
Fatimah Dinan Qonitan

ABSTRAKOzon troposferik merupakan polutan sekunder yang bersifat racun bagi manusia. Beberapa penelitian menemukan terjadinya peningkatan konsentrasi ozon di troposfer selama periode El Nino pada tahun 1997/1998 dan 2006 di Indonesia. Studi ini berisi kajian dan sintesis berbagai literatur ilmiah untuk mengetahui aspek-aspek yang mempengaruhi peningkatan konsentrasi ozon troposferik di periode tersebut. Peningkatan ozon rata-rata diketahui dengan membandingkan konsentrasi latar belakang total ozon pada tahun-tahun normal dengan periode El Nino 1997/1998 dan 2006. Peningkatan ozon terutama terjadi di musim kering pada periode El Nino, ketika terjadi penurunan tingkat presipitasi yang signifikan dan kebakaran hutan besar di Indonesia. Pada El-Nino 1997/1998 terjadi anomali positif konsentrasi ozon troposferik sebesar 10-20 DU, sedangkan pada El-Nino 2006 sebesar 10-15 DU. Peristiwa kebakaran hutan ini mengemisikan prekursor pembentuk ozon (O3) dalam jumlah besar, diantaranya adalah karbon monoksida (CO) dan Nitrogen Oksida (NOx).Kata kunci: El Nino, ENSO, Indonesia, Kebakaran, Tropospheric OzoneABSTRACTTropospheric ozone is a secondary pollutant that is toxic to humans. Several studies have found an increase in ozone concentration in the troposphere during periods of 1997/1998 and 2006 El Nino in Indonesia. This study intends to review and synthesize earlier research to determine important aspects affecting increase of tropospheric ozone concentration during those period. Average tropospheric ozone increase was estimated by subtracting the background concentration of total ozone during the normal years on 1997/1998 and 2006 El Nino periods. Significant increase tropospheric ozone mostly occurred in the dry season during the El Nino periods when the precipitation decreased significantly and extensive forest fire occurred frequently in Indonesia. During the 1997/1998 El-Nino, there is positive anomaly of tropospheric ozone by 10-20 DU, and 10-15 DU in 2006 El Nino. Forest fires event emit large numbers of ozone (O3)-forming precursors, such as carbon monoxide (CO) and nitrogen oxides (NOx).Keywords: El Nino, ENSO, Forest Fire, Indonesia, Tropospheric Ozone


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12029
Author(s):  
Minerva Singh ◽  
Xiaoxiang Zhu

In the past two decades, Amazon rainforest countries (Brazil, Bolivia, Colombia, Ecuador, Guyana, Peru and Venezuela) have experienced a substantial increase in fire frequency due to the changes in the patterns of different anthropogenic and climatic drivers. This study examines how both fire dynamics and bioclimatic factors varied based on the season (wet season and dry season) El Niño years across the different countries and ecosystems within the Amazon rainforest. Data from publicly available databases on forest fires (Global Fire Atlas) and bioclimatic, topographic and anthropogenic variables were employed in the analysis. Linear mixed-effect models discovered that year type (El Niño vs. non-El Niño), seasonality (dry vs. wet), land cover and forest strata (in terms of canopy cover and intactness) and their interactions varied across the Amazonian countries (and the different ecosystems) under consideration. A machine learning model, Multivariate Adaptive Regression Spline (MARS), was utilized to determine the relative importance of climatic, topographic, forest structure and human modification variables on fire dynamics across wet and dry seasons, both in El Niño and non-El Niño years. The findings of this study make clear that declining precipitation and increased temperatures have strong impact on fire dynamics (size, duration, expansion and speed) for El Niño years. El Niño years also saw greater fire sizes and speeds as compared to non-El Niño years. Dense and relatively undisturbed forests were found to have the lowest fire activity and increased human impact on a landscape was associated with exacerbated fire dynamics, especially in the El Niño years. Additionally, the presence of grass-dominated ecosystems such as grasslands also acted as a driver of fire in both El Niño and non-El Niño years. Hence, from a conservation perspective, increased interventions during the El Niño periods should be considered.


2013 ◽  
Vol 10 (8) ◽  
pp. 10971-10995 ◽  
Author(s):  
M. A. H. Zaroug ◽  
E. A. B. Eltahir ◽  
F. Giorgi

Abstract. The Blue Nile originates from Lake Tana in the Ethiopian Highland and contributes about 67% of the discharge in the main Nile River. Previous studies investigated the relationship of sea surface temperature (SST) in the Pacific Ocean (Nino 3.4 region) to occurrence of floods and droughts in rainfall and river flow over the Nile basin. In this paper we focus on the dependence of occurrence of droughts and floods in the upper catchment of the Blue Nile on the timing of El Niño and La Niña events. Different events start in different times of the year and follow each other exhibiting different patterns and sequences. Here, we study the impact of this timing and temporal patterns on the Nile droughts and floods. We analyze discharge measurements (1965–2012) at the outlet of the upper catchment of the Blue Nile in relation to the El Niño index. When an El Niño event is followed by a La Niña event, there is a 67% chance for occurrence of an extreme flood. The association of start dates of El Niño with occurrence of droughts in the upper catchment of the Blue Nile is evaluated. An El Niño event that starts in (April–June) is associated with a significant drought occurrence in 83% of the cases. We propose that observations as well as global model forecasts of SST during this season could be used in seasonal forecasting of the Blue Nile flow.


Sign in / Sign up

Export Citation Format

Share Document