scholarly journals Controlling Poinsettia (Euphorbia pulcherrima Will.) Height with Growth Retardant Application in West Java, Indonesia

2016 ◽  
Vol 3 (3) ◽  
pp. 89-92
Author(s):  
Dewi Sukma ◽  
Gina Megawati

A study was conducted to evaluate the effects of the growth retardant Cycocel application in the growth and development of poinsettia (Euphorbia pulcherrima) ‘Freedom Red’.  Cycocel was applied by spraying plant shoots at the concentrations of 1000, 1500, 2000, 2500 ppm. The increase in cycocel concentrations reduced plant height, leaf size, internodal length, plant spread and the number of flowering plants. All cycocel concentrations resulted in an ideal potted plant height. The optimum spray concentration of Cycocel used to obtain compact and uniformly flowering plants under tropical West Java environment was 1000 ppm.

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1071g-1071
Author(s):  
Douglas A. Bailey ◽  
William B. Miller

Plants of Euphorbia pulcherrima Wind. `Glory' were grown under 13.4, 8.5, or 4.0 mol·m-2·day-1 and sprayed with water (control); 2500 mg·liter-1 daminozide + 1500 mg·liter-1 chlormequat chloride (D+C); 62.5 mg·liter-1 paclobutrazol; or 4, 8, 12 or 16 mg·liter-1 uniconazole to ascertain plant developmental and pest-production responses to the treatment combinations. Days to anthesis increased as irradiance was decreased. Anthesis was delayed by the D+C treatment, while other growth retardant (GR) treatments had no effect on anthesis. Irradiance did not affect plant height at anthesis, but all GR treatments decreased height over control plants. Bract display and bract canopy display diameters declined as irradiance was decreased. Growth retardants did not affect individual bract display diameters, but all GR treatments except paclobutrazol reduced bract canopy display diameter. Plants grown under lower irradiance had fewer axillary buds develop, fewer bract displays per plant, and fewer cyathia per bract display. Cyathia abscission during a 30 day post-anthesis evaluation was not affected by treatment; however, plant leaf drop was linearly proportional to irradiance. All GR treatments increased leaf drop over controls, and the D+C treated plants had the highest leaf loss. Results indicate the irradiance and GR treatments during production can affect poinsettia crop timing, plant quality at maturity, and subsequent post-production performance.


HortScience ◽  
1991 ◽  
Vol 26 (12) ◽  
pp. 1501-1503 ◽  
Author(s):  
Douglas A. Bailey ◽  
William B. Miller

Plants of Euphorbia pulcherrima Wind. `Glory' were grown under total irradiances of 13.4, 8.5, or 4.0 mol·m-2·day-1 and sprayed with water (control), 2500 mg daminozide/liter + 1500 mg chlormequat chloride/liter (D + C), 62.5 mg paclobutrazol/liter, or 4, 8, 12, or 16 mg uniconazole/liter to ascertain plant developmental and postproduction responses to treatment combinations. Anthesis was delayed for plants grown under the lowest irradiance. Anthesis was delayed by the D + C treatment, whereas other growth retardant treatments had no effect on anthesis date. Irradiance did not affect plant height at anthesis, but all growth retardant treatments decreased height over control plants. Inflorescence and bract canopy diameters were decreased at the lowest irradiance level. Growth retardants did not affect individual inflorescence diameters, but all, except paclobutrazol and 4 and 8 mg uniconazole/liter, reduced bract canopy diameter compared with control plants. Plants grown under the lowest irradiance developed fewer inflorescences per plant and fewer cyathia per inflorescence. Cyathia abscission during a 30-day postanthesis evaluation increased as irradiance was decreased; cyathia abscission was unaffected by growth retardant treatment. Leaf abscission after 30 days postanthesis was lowest for plants grown under the lowest irradiance. At 30 days postanthesis, all growth retardant treatments increased leaf abscission over controls. Results indicate that irradiance and growth retardant treatments during production can affect poinsettia crop timing, plant quality at maturity, and subsequent postproduction performance. Chemical names used: 2-chloroethyl-N,N,N-trimethylammonium chloride (chlormequat chloride); butanedioic acid mono (2,2-dimethyl hydrazide) (daminozide); β-[(4-chlorophenyl) methyl]- α -(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol (paclobutrazol), (E)-1-(p-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-l-penten-3-ol (uniconazole, XE-1019).


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1071G-1071
Author(s):  
Douglas A. Bailey ◽  
William B. Miller

Plants of Euphorbia pulcherrima Wind. `Glory' were grown under 13.4, 8.5, or 4.0 mol·m-2·day-1 and sprayed with water (control); 2500 mg·liter-1 daminozide + 1500 mg·liter-1 chlormequat chloride (D+C); 62.5 mg·liter-1 paclobutrazol; or 4, 8, 12 or 16 mg·liter-1 uniconazole to ascertain plant developmental and pest-production responses to the treatment combinations. Days to anthesis increased as irradiance was decreased. Anthesis was delayed by the D+C treatment, while other growth retardant (GR) treatments had no effect on anthesis. Irradiance did not affect plant height at anthesis, but all GR treatments decreased height over control plants. Bract display and bract canopy display diameters declined as irradiance was decreased. Growth retardants did not affect individual bract display diameters, but all GR treatments except paclobutrazol reduced bract canopy display diameter. Plants grown under lower irradiance had fewer axillary buds develop, fewer bract displays per plant, and fewer cyathia per bract display. Cyathia abscission during a 30 day post-anthesis evaluation was not affected by treatment; however, plant leaf drop was linearly proportional to irradiance. All GR treatments increased leaf drop over controls, and the D+C treated plants had the highest leaf loss. Results indicate the irradiance and GR treatments during production can affect poinsettia crop timing, plant quality at maturity, and subsequent post-production performance.


2014 ◽  
Vol 67 (3) ◽  
pp. 65-74 ◽  
Author(s):  
Anna Pobudkiewicz

This study was undertaken to evaluate the influence of single foliar flurprimidol treatment on morphology and transpiration of ‘Roman’ and ‘Freedom Red’ poinsettias. The growth retardant flurprimidol (Topflor 015 SL) was applied once as a foliar spray at concentrations of 5, 10 or 15 mg × dm<sup>-3 </sup>when lateral shoots were about 5 cm in length. Single foliar flurprimidol treatment was sufficient to inhibit stem elongation of both poinsettia cultivars. The degree of growth inhibition depended on cultivar and growth retardant concentration. As compared to the control, the shoots of flurprimidol treated ‘Roman’ and ‘Freedom Red’ plants were up to 44% and 37% shorter, respectively. The desirable plant heights for ‘Roman’ and ‘Freedom Red’ poinsettias were obtained with flurprimidol at concentrations of 5 and 10 mg × dm<sup>-3</sup>, respectively. The shoots of flurprimidol sprayed poinsettia were also more rigid and aligned relative to each other and thus the bracts on the plant were placed on the same level. The diameters of growth retardant treated poinsettias were up to 13% narrower. The leaf areas, petiole lengths, fresh and dry weights of ‘Roman’ and ‘Freedom Red’ poinsettias treated with flurprimidol were substantially smaller as compared to the control. The bract diameters of both poinsettia cultivars were only slightly affected by growth retardant application. Plants exposed to flurprimidol had also intensified green leaf pigmentation. There was almost no abscission of the oldest leaves in the low portions of growth retardant treated plants, compared to those of the control ones. Flurprimidol had no effect on transpiration rate per unit leaf area and stomatal conductance in both poinsettia cultivars. No phytotoxicity was observed in flurprimidol treated plants. Chemical name used: α-(1-methylethyl)-α-[4-(trifluromethoxy)phenyl]-5-pyrimidinemethanol (flurprimidol).


2016 ◽  
Vol 26 (1) ◽  
pp. 20-25
Author(s):  
Christopher J. Currey ◽  
Nicholas J. Flax ◽  
Kellie J. Walters

Our objective was to quantify the efficacy of foliar plant growth retardant applications on plant height and time to flower of seed-propagated new guinea impatiens (Impatiens hawkeri) produced in packs and flats. ‘Divine Cherry Red’, ‘Divine Scarlet Bronze Leaf’, and ‘Divine White Blush’ seedlings were planted in 1801-cell packs. Seven days after planting, deionized water (control) or solutions containing ancymidol (15 to 60 mg·L−1), chlormequat chloride (750 to 3000 mg·L−1), daminozide (1250 to 5000 mg·L−1), ethephon (250 to 1000 mg·L−1), flurprimidol (10 to 40 mg·L−1), paclobutrazol (10 to 40 mg·L−1), or uniconazole (5 to 20 mg·L−1) were applied to seedlings. A second experiment was performed with the same cultivars quantifying the growth and development in response to a broader range of flurprimidol or paclobutrazol (5 to 40 mg·L−1) or uniconazole (2.5 to 20 mg·L−1) sprays. Plant height was measured 7 weeks after planting. For Expt. 1, ancymidol, chlormequat chloride, and daminozide had little to no impact on stem elongation. However, flurprimidol, paclobutrazol, and uniconazole suppressed height at flowering of all three cultivars. In Expt. 2, plant height with concentrations flurprimidol, paclobutrazol, or uniconazole up to 27 to 30, 20 to 30, or 4 to 5 mg·L−1, respectively, depending on the cultivar. Five to 20 mg·L−1 flurprimidol or paclobutrazol, or < 2.5 mg·L−1 uniconazole may be used to control stem elongation of seed-propagated new guinea impatiens for production in flats.


2014 ◽  
Vol 56 (11) ◽  
pp. 1053-1063 ◽  
Author(s):  
Lei Wu ◽  
Dengfeng Zhang ◽  
Ming Xue ◽  
Jianjun Qian ◽  
Yan He ◽  
...  
Keyword(s):  

Author(s):  
Canan Nilay Duran ◽  
Gizem Demirkaplan ◽  
Sevinç Şener

Passionflower is a member of Passifloraceae family, it can be used as medicinal and ornamental plants in addition to its consumption as fruit in the world. Guava (Psidium guajava L.) fruits, which has a rich nutrient content, are consumed both fresh and processed. Passionfruit and guava plants, which can only be cultivated in temperate southern coasts in our country, have gained commercial importance because of the fruits' export potential, high medical importance and nutrient. This study was carried out to determine the effects of some bioactivator applications on the criteria of sapling growth and development of passionflower and guava plants. The experiment was conducted between 2018-2019 under greenhouse conditions. Saplings obtained from seed germination in Akdeniz University Faculty of Agriculture Research and Experiment Area were used as plant material. 3 different commercial preparations called Messenger, Crop-set and ISR-2000 were used as bioactivators. Plant height (cm), stem diameter (mm) and number of leaves (number / plant) were measured weekly, in order to determine the effect of the applications on the growth and development of saplings. At the end of the study, it was determined that the highest average plant height (10.17 cm), stem diameter (13.53 mm) were obtained in ISR-2000 application. The highest average plant height (11.93 cm), stem diameter (16.44 mm) and number of leaves (9.07 units / plant) were obtained from Messenger application in guava plant. When the results obtained are evaluated, it is recommended that ISR-2000 bioactivator can be applied in passionflower sapling cultivation and Messenger bioactivator can be applied for guava sapling cultivation.


2016 ◽  
Vol 8 (1) ◽  
pp. 81 ◽  
Author(s):  
María Orozco ◽  
Susanne Thienhaus

We studied the effect of the organic chicken manure on the growth and development of cocoa trees (Theobroma cacao L.), during their juvenile stage. The experiment was initiated in February, 1993, in three commercial plantations, 20 months old, located in the county of El Rama, Region V. During the following 14 months we carried out three application , comparing, the three levels of chicken manure (454 , 908 . and 1,362 g per tree and application) with mineral fertilizer (three applications , of 15-15-15fertilizers100 g per tree, plus one application of, urea 100 g per tree), and a check without any applications. A random complete bolck design was utilized and means were compared by, Duncan’s test and regression and correlation analyses were also made. The results showed that with the application of 1,362 g of chicken manure, a significatively higher effect over the initial production of cocoa, and an increase of the stalk diameter were observed. The applications of 454 and 908, of chicken manure resulted in production levels equal to those of the treatment with mineral fertilizers. In relation to plant height, we did not find statistical differences among treatments. The treatment without fertilizer , showed the smallest growth and lower production.


2018 ◽  
Vol 98 (6) ◽  
pp. 1321-1330
Author(s):  
Jaimin S. Patel ◽  
Leora Radetsky ◽  
Mark S. Rea

Sweet basil (Ocimum basilicum L.) is primarily used for culinary purposes, but it is also used in the fragrance and medicinal industries. In the last few years, global sweet basil production has been significantly impacted by downy mildew caused by Peronospora belbahrii Thines. Nighttime exposure to red light has been shown to inhibit sporulation of P. belbahrii. The objective of this study was to determine if nighttime exposure to red light from light-emitting diodes (λmax = 625 nm) could increase plant growth (plant height and leaf size) and yield (number and weight of leaves) in basil plants. In two sets of greenhouse experiments, red light was applied at a photosynthetic photon flux density of 60 μmol m−2 s−1 during the otherwise dark night for 10 h (from 2000 to 0600). The results demonstrate that exposure to red light at night can increase the number of basil leaves per plant, plant height, leaf size (length and width), and leaf fresh and dry weight compared with plants in darkness at night. The addition of incremental red light at night has the potential to be cost-effective for fresh organic basil production in controlled environments.


Sign in / Sign up

Export Citation Format

Share Document