scholarly journals Petrology and Geochemistry of the Eocene Volcanic Rocks in the West of Sechangi, Lut Block

2019 ◽  
Vol 5 (1) ◽  
pp. 19-54
Author(s):  
Morteza Khalatbari Jafari ◽  
Zinat Kilani Jafari Sani ◽  
Jafar Omrani ◽  
◽  
◽  
...  
1985 ◽  
Vol 22 (6) ◽  
pp. 881-892 ◽  
Author(s):  
John D. Greenough ◽  
S. R. McCutcheon ◽  
V. S. Papezik

Lower to Middle Cambrian volcanic rocks occur within the Avalon Zone of southern New Brunswick at Beaver Harbour and in the Long Reach area. The Beaver Harbour rocks are intensely altered, but the major- and trace-element geochemistry indicates that they could be highly evolved (basaltic andesites) within-plate basalts. The mafic flows from the Long Reach area form two chemically and petrologically distinct groups: (1) basalts with feldspar phenocrysts that represent evolved continental tholeiites with some oceanic characteristics; and (2) a group of aphyric basalts showing extremely primitive continental tholeiite compositions, also with oceanic affinities and resembling some rift-related Jurassic basalts on the eastern seaboard. Felsic pyroclastic rocks in the Long Reach area make the suite bimodal. This distribution of rock types supports conclusions from the mafic rocks that the area experienced tension throughout the Early to Middle Cambrian.


2015 ◽  
Vol 10 (Special-Issue1) ◽  
pp. 1194-1205 ◽  
Author(s):  
Omid Namin ◽  
Afshin Ardalan ◽  
Mohammad Razavi ◽  
Arash Gourabjeripour ◽  
Abdollah Yazdi

Author(s):  
A.I. Malinovsky ◽  

The article discusses the results of studying heavy clastic minerals from the Cretaceous sandy rocks of the West Sakhalin Terrane, and also presents their paleogeodynamic interpretation. It is shown that in terms of mineralogical and petrographic parameters, the terrane sandstones correspond to typical graywackes and are petrogenic rocks formed mainly by destruction of igneous rocks of the source areas. The sediments were found to contain both sialic, granite-metamorphic association minerals, and femic, formed by products of the destruction of basic and ultrabasic volcanic rocks. The interpretation of the entire set of data on the content, distribution and microchemical composition of heavy minerals was carried out by comparing them with minerals from older rocks and modern sediments accumulated in known geodynamic settings. The results obtained indicate that during the Cretaceous, sedimentation occurred along the continent-ocean boundary in a basin associated with large-scale left-lateral transform movements of the Izanagi Plate relative to the Eurasian continent. The source area that supplied clastic material to that basin combined a sialic landmass composed of granite-metamorphic and sedimentary rocks, a mature deeply dissected ensialic island arc, and fragments of accretion prisms, in the structure of which involved ophiolites.


1994 ◽  
Vol 13 (1) ◽  
pp. 35-46 ◽  
Author(s):  
Carl-Henry Geschwind

In the 1860's and 70's, microscopic petrography flourished in Germany, where descriptions and classifications of rocks were highly valued for their own sake. American geologists, however, were more interested in stratigraphical correlations and had relatively little use for petrographical details. Thus, such Americans as George Hawes and Alexis Julien, who attempted to introduce the microscope for purely petrographical work in the early 1870's, had great difficulties in finding an audience. During the late 1870's, however, a number of American geologists-including federal geologists working amongst the volcanic rocks of the West, state geologists mapping in the Lake Superior region, and mining geologists examining the Comstock Lode and the Leadville district-came to appreciate the aid microscopic petrography could provide for stratigraphical correlations. This growing interest led to the hiring of a number of microscopic petrographers around 1880. These petrographers were trained in Germany, where they had imbibed the German passion for petrography for its own sake, but most of them adapted themselves to the American practice of using petrography for stratigraphy. Unlike many of their German counterparts, these American petrographers spent a substantial portion of their time in the field and combined mapping with microscopic examinations to solve stratigraphical problems. Thus, the different scientific cultures of Germany and the U.S. significantly affected the ways in which the petrographic microscope was used.


1986 ◽  
Vol 123 (6) ◽  
pp. 699-702 ◽  
Author(s):  
J. A. Naranjo ◽  
A. Puig ◽  
M. Suárez

AbstractRadiometric dates on specimens of plutons of the Coastal Cordillera of Atacama span the period 300–110 Ma. A group of dates cluster around 190 Ma and evidence is presented which strongly suggests that they represent near crystallization ages. The geographic distribution of these plutons, adjacent to Liassic tuffs and lavas (Pan de Azúcar and Posada de los Hidalgo formations), suggests a genetic relationship between them, and that the plutons were the roots of the Lower Jurassic volcanic chain. The location of these granitoids to the west of the Liassic volcanic rocks, favours a previous idea that the Liassic basin extended eastwards as a back-arc or intra-arc basin. The host rocks to the Lower Jurassic plutons include Palaeozoic granitoids and metasedimentary rocks, indicating that the volcanic chain was founded on continental crust. The distance from the Liassic plutons to the present-day trench is less than 100 km, which indicates the possibility that part of the arc-trench system of that time is missing.


1981 ◽  
Vol 18 (9) ◽  
pp. 1478-1491 ◽  
Author(s):  
Thomas E. Ewing

The Kamloops Group is an alkali-rich calc-alkaline volcanic suite of Early to Middle Eocene age, widespread in south-central British Columbia. Rock types in the suite range from high-K basalt through andesite to rhyolite. The suite is characterized by relatively high K2O, Sr, and Ba, but low Zr, Ti, and Ni concentrations, only moderate Ce enrichment, and little or no Fe enrichment. Initial ratios 87Sr/86Sr are about 0.7040 in the western half, and about 0.7060 in the eastern half of the study area. No difference in chemistry or mineralogy marks this sharp transition. Chemically similar suites include the Absaroka–Gallatin suite in Wyoming and the lower San Juan (Summer Coon) suite in Colorado. The content of K2O at 60% SiO2 increases regularly eastward across southern British Columbia. The chemical data support the subduction-related continental arc origin of the Kamloops Group volcanics.The volcanic rocks consist in the main of augite–pigeonite andesites ranging from 52 to 62% silica, with subordinate quantities of olivine–augite–pigeonite basalt and biotite rhyodacite and rhyolite. The andesites and basalts were derived by a combination of low-pressure fractional crystallization, higher pressure fractional crystallization, and variable parental magmas, whereas low-pressure fractional crystallization of plagioclase, biotite, and apatite from parental basalt and andesite produced the rhyolites. The parental magmas were basalts and basaltic andesites with high K, Sr, and Ba. The primary source of these magmas is inferred to have been an alkali-enriched hydrous peridotite with neither plagioclase nor garnet present in the residuum.


Sign in / Sign up

Export Citation Format

Share Document