scholarly journals Phase and Amplitude Control Integrated Circuit in 0.18 μm SiGe BiCMOS for Sub-6 GHz Phased Array Applications

2021 ◽  
Vol 16 (2) ◽  
pp. 1-6
Author(s):  
Ivan Filippov

This paper presents simulation results of the C-band transmit/receive (Tx/Rx) phased-arrays integrated circuit (IC) for sub-6 GHz communication links. It is based on 0.18 μm SiGe BiCMOS technology. Phase and amplitude control IC consists of one Tx/Rx channel. Digitally controlled phase shifter allows adjusting relative phase of the output microwave signal in the range from 0 to 360 degrees with 5.625 degree step (6-bit resolution). Digitally controlled active attenuator provides the transfer ratio adjusting in the range from 0 to –31 dB with 1 dB step (5 bit resolution). Amplitude and phase correction system based on integrated temperature sensor, auxiliary 4-bit phase shifter, 4-bit attenuator and digital control unit is implemented. Correction in –60—85 °C temperature range with 5-bit resolu-tion is provided. The root mean square (rms) phase adjustment error does not exceed 1.6 degree. The rms attenuation error does not exceed 0.37 dB. The noise figure in Rx mode is below 6.5 dB. The output power in Tx mode is above 6 dBm at P1dB. The power consumption is 375 mW and 525 mW in Rx and Tx modes respectively.

2013 ◽  
Vol 5 (3) ◽  
pp. 329-334 ◽  
Author(s):  
Udo Karthaus ◽  
Stephan Ahles ◽  
Ahmed Elmaghraby ◽  
Horst Wagner

This paper presents a radio frequency (RF) continuous-time band-pass delta sigma modulator (CT BP DSM) receiver realized in a 180 nm SiGe BiCMOS technology. It also provides an introduction to active antenna systems (AAS) for cellular infrastructure base stations, which is the target application for this RF integrated circuit (IC). The internal quantizer and feedback digital to analog converter (DAC) resolution of the CT BP DSM is 2 bit. Without applying DAC linearization techniques such as trimming or dynamic element matching being utilized, measured performance parameters include an SNR and SNDR in 35 MHz bandwidth of 56.7 and 53.7 dB, respectively. IIP3 and noise figure are −6.6 dBm and 10 dB, respectively. No image reception is noticeable within a measurement dynamic range of 83 dB. When driven by single-carrier and three-carrier W-CDMA signals, adjacent channel leakage ratio (ACLR) is −62.6 and −52.1 dB, respectively, making the design also suitable as a modulator for a class-S power amplifier.


2013 ◽  
Vol 380-384 ◽  
pp. 3287-3291
Author(s):  
Bing Liang Yu ◽  
Xiao Ning Xie ◽  
Wen Yuan Li

A fully integrated low noise amplifier (LNA) for wireless local area network (WLAN) application is presents. The circuit is fabricated in 0.18μm SiGe BiCMOS technology. For the low noise figure, a feedback path is introduced into the traditional inductively degenerated common emitter cascade LNA, which decreases the inductance for input impedance matching, therefore reduces the thermal noise caused by loss resistor. Impedance matching and noise matching are achieved at the same time. Measured results show that the resonance point of the output resonance network shifts from 2.4GHz to 2.8GHz, due to the parasitic effects at the output. At the frequency of 2.8GHz, the LNA achieves 2.2dB noise figure, 19.4dB power gain. The core circuit consumes only 13mW from a 1.8V supply and occupies less than 0.5mm2.


Author(s):  
A. Cagri Ulusoy ◽  
Mehmet Kaynak ◽  
Vaclav Valenta ◽  
Bernd Tillack ◽  
Hermann Schumacher

2019 ◽  
Vol 30 ◽  
pp. 01003
Author(s):  
Ivan Filippov ◽  
Nikolay Duchenko ◽  
Yuri Gimpilevich

This paper presents a silicon-based complex-functional monolithic microwave integrated circuits (MMICs) design methodology. Post-layout simulation stage particularities are discussed. Pre-tapeout functionality verification results of the C-band phase and amplitude control MMIC based on 0.18 μm SiGe BiCMOS technology are also presented.


Sign in / Sign up

Export Citation Format

Share Document