scholarly journals Analisis tekanan udara, sudut slip dan ukuran lebar ban tipe radial terhadap rolling resistance dengan metode taguchi

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Ilham Habibi ◽  
Dedi Dwilaksana ◽  
Boi Arief Fachri

Rolling resistance is one of the main factors affecting the fuel efficiency of a vehicle. Rolling resistance is resistance to the wheels that will and has been rolled due to the force of friction between the wheels with the road surface of the wheel, due to the deformation process on the tire structure, contact area and road surface. Radial tires are tires where the reinforcing fibers on the carcass are arranged radially, have a greater ability to withstand lateral forces and generally have high ratio aspect ratio, widht smaller than the bias tires. The taguchi method is a new methodology in engineering aimed at improving product and process quality, minimizing cost and time. The purpose of this research is to know the air pressure influence, slip angle and tire width to rolling resistance. The research was conducted experimentally by using taguchi method. The result showed that the highest rolling resistance force accurred at a combination of air pressure of 175 kPa, 9o wheel slip angle and 90 mm widht of tire size of 36.914 N. While the smallest rolling resistance was obtained with a combination of parameters at the air pressure level of 325 kPa, slip angle 1o and the size of the 70 mm tire widht of 11.511 N at 350 rpm and normal load 580 N. From the result it can be concluded that the change in the level of the three air pressure parameters, the slip angle and size of tire width can affect the rolling resistance value.

2018 ◽  
Vol 8 (1) ◽  
pp. 30
Author(s):  
I. Habibi ◽  
D. Dwilaksana ◽  
B.A. Fachri

Rolling resistance is one of the main factors affecting the fuel efficiency of a vehicle. Rolling resistance is resistance to the wheels that will and has been rolled due to the force of friction between the wheels with the road surface of the wheel, due to the deformation process on the tire structure, contact area and road surface. Radial tires are tires where the reinforcing fibers on the carcass are arranged radially, have a greater ability to withstand lateral forces and generally have high ratio aspect ratio, widht smaller than the bias tires. The taguchi method is a new methodology in engineering aimed at improving product and process quality, minimizing cost and time. The purpose of this research is to know the air pressure influence, slip angle and tire width to rolling resistance. The research was conducted experimentally by using taguchi method. The result showed that the highest rolling resistance force accurred at a combination of air pressure of 175 kPa, 9o wheel slip angle and 90 mm widht of tire size of 36.914 N. While the smallest rolling resistance was obtained with a combination of parameters at the air pressure level of 325 kPa, slip angle 1o and the size of the 70 mm tire widht of 11.511 N at 350 rpm and normal load 580 N. From the result it can be concluded that the change in the level of the three air pressure parameters, the slip angle and size of tire width can affect the rolling resistance value.


Author(s):  
Tamer Wasfy ◽  
Hatem Wasfy ◽  
Paramsothy Jayakumar ◽  
Srinivas Sanikommu

Abstract The objective of this study is to validate a high-fidelity finite element tire model on hard pavement. In this model, the tire rubber matrix is modeled using locking-free brick elements with embedded thin beam elements along the tire’s circumference, meridian, and diagonals for modeling the tire’s reinforcements (belt, ply and bead). The internal air pressure is applied as a distributed force on the inner surface of the brick elements. Frictional contact between the outer surface of the brick elements and the pavement is modeled using the penalty method along with an asperity based Coulomb friction model. In order to validate the tire model, a medium duty truck tire is modeled and the following response quantities are compared to experimental results: (1) normal load versus deflection at different tire pressures; (2) rolling resistance versus speed; (3) longitudinal force versus slip; (4) lateral force versus slip angle for different normal loads; and (5) self-aligning torque versus slip angle for different normal loads.


1976 ◽  
Vol 4 (1) ◽  
pp. 3-15 ◽  
Author(s):  
D. J. Schuring

Abstract The concept of rolling resistance force is replaced by that of energy dissipated in unit distance traveled. The energy loss per unit distance, which is a function of slip angle, inclination angle, wheel torque, and other variables, is shown to reach a minimum under driving conditions. The new formula is compared with those given by Gough and by the Society of Automotive Engineers.


ROTOR ◽  
2017 ◽  
Vol 10 (1) ◽  
pp. 51
Author(s):  
Aditya Krisna Hutomo ◽  
Dedy Dwi Laksana ◽  
Fx. Kristianta

Rolling Resistance is a resistance to the wheels that will and have been rolling due to the force of friction between the wheels with the road surface of the wheel. Rolling resistance is influenced by four factors, that is vehicle weight, road surface, transmission, and tires. This study usefull to determine the influence of tread pattern surface to force and coefficient rolling resistance, tire surface contact area and tire pressure value. In this study using motorcycle tires with size 90/90-17. The tire used is a tire with RIB tread pattern (straight groove) and LUG tread pattern (zig-zag groove). Each type of RIB and LUG tread pattern used each of two tires that is the type of simple tread pattern and the complex tread pattern. From the results of the study showed that the tire with a simple tread pattern will produce a small force of rolling resistance but will result in a larger surface tire surface contact than the tire with the complex tread pattenr. While for the tire with the type complex tread pattern has a greater pressure value that will produce a great rolling resistance force. For tires get the best rolling resistance force is the tire with a simple LUG tread pattern of 10.234 N and followed by a tire with a simple RIB tread pattern type of 10.563 N. Keywords: tread pattern, rolling resistance, rib, lug.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 535
Author(s):  
Szymon Tengler ◽  
Kornel Warwas

Computer simulations of vehicle dynamics become more complex when a vehicle movement takes place on the uneven road surface. In such a case two problems must be solved. The first one concerns a way of road surface modeling, and the second one a way of precisely determining a place of interaction of reaction forces of the road on the vehicle wheels. In this paper triangular irregular networks (TIN) surface was used for modeling surface unevenness, and the author’s algorithm based on the efficient kd-tree data structure was developed for determining a place of an application road surface reaction forces. For calculating the reaction forces including rolling resistance force the Pacejka Magic Formula tire model was used. The solution presented in the paper is computing efficient and for this reason it can be used in the in real-time simulations not only for a vehicle dynamics but for any objects moving over an uneven surface road.


1989 ◽  
Vol 17 (1) ◽  
pp. 66-84
Author(s):  
A. R. Williams

Abstract This is a summary of work by the author and his colleagues, as well as by others reported in the literature, that demonstrate a need for considering a vehicle, its tires, and the road surface as a system. The central theme is interaction at the footprint, especially that of truck tires. Individual and interactive effects of road and tires are considered under the major topics of road aggregate (macroscopic and microscopic properties), development of a novel road surface, safety, noise, rolling resistance, riding comfort, water drainage by both road and tire, development of tire tread compounds and a proving ground, and influence of tire wear on wet traction. A general conclusion is that road surfaces have both the major effect and the greater potential for improvement.


1977 ◽  
Vol 5 (2) ◽  
pp. 75-82 ◽  
Author(s):  
A. Schallamach

Abstract Expressions are derived for side force and self-aligning torque of a simple tire model on wet roads with velocity-dependent friction. The results agree qualitatively with experimental results at moderate speeds. In particular, the theory correctly predicts that the self-aligning torque can become negative under easily realizable circumstances. The slip angle at which the torque reverses sign should increase with the normal load.


Author(s):  
V Sureshkannan ◽  
TV Arjunan ◽  
D Seenivasan ◽  
SP Anbuudayasankar ◽  
M Arulraj

Compressed air free from traces of water vapour is vital in many applications in an industrial sector. This study focuses on parametric optimization of a pressure-based packed bed adsorption system for air dehumidification through the Taguchi method and Genetic Algorithm. The effect of operational parameters, namely absolute feed air pressure, feed air linear velocity, and purge air flow rate percent on adsorption uptake rate of molecular sieve 13X-water pair, are studied based on L25 orthogonal array. From the analysis of variance, it has been found that absolute feed air pressure and purge air flow rate percent were the parameters making significant improvement in the adsorption uptake rate. A correlation representing the process was developed using regression analysis. The optimum adsorption conditions were obtained through the Taguchi method and genetic algorithm and verified through the confirmation experiments. This system can be recommended for the industrial and domestic applications that require product air with the dew point temperature below 0°C.


2021 ◽  
pp. 17-27
Author(s):  
V.I. Kopotilov

The analysis of the physical essence of the kinematic and dynamic radii of the wheel is given. It is stated that the rolling radius of the wheel is a conditional kinematic parameter that characterizes only the rolling mode of the wheel. It is not the shoulder of all longitudinal forces acting on the wheel and should not be used to determine tractive forces, rolling resistance and wheel braking forces. Specific examples are given to illustrate the inappropriateness of using the kinematic radius to determine forces and moments. Keywords: elastic wheel, rolling radius, kinematic radius, dynamic radius, arm of force, traction force, rolling resistance force, braking force, rolling mode


Sign in / Sign up

Export Citation Format

Share Document