scholarly journals Studies on the Development of New Efficient Corrosion Inhibitors for Crude Oil Pipelines: Electrochemical Impedance Spectroscopy Results for 1,8-Naphthyridines

2017 ◽  
Vol 57 (1) ◽  
Author(s):  
Rodolfo Álvarez-Manzo ◽  
Joel Mendoza-Canales ◽  
Salvador Castillo-Cervantes ◽  
Jesús Marín-Cruz

Five 1,8-naphthyridines were tested as corrosion inhibitors, including three non-previously reported 3-alkyl-1,8-naphthyridines. All were produced via the extended Friedländer synthesis, that for 3-alkyl-1,8-naphthyridines involves the earliest use of aliphatic aldehydes. Fragmentation pattern in MS for 3-alkyl-1,8-naphthyridines shows a remarkable parallel with that exhibited by 3-alkylpyridines. Electrochemical Impedance Spectroscopy (EIS) was used to assess the inhibiting properties of these compounds on samples of API X52 carbon steel pipelines immersed in oilfield-related water. Except for one of the molecules tested, the inhibition  efficiency (IE%) values were significantly higher than that calculated for a reference commercial inhibitor.

Author(s):  
K.K. Taha ◽  
Musa E. Mohamed ◽  
S.A. Khalil ◽  
S.A. Talab

Brass as an alloy composed mainly of copper is great industrial uses such as heat exchangers and similar other facility due to its good thermal properties. Due to the presence of the considerable ratio of zinc the alloy suffers from zinc dissolution or dezincification. Dezincification rate increases with the increase in the ratio of zinc in the alloy. In this study benzothiazole (BTH) and its substituent’s 2-methylbenzothiazole (MeBTH), 2-aminobenzothiazole (ABTH), 2-mercaptobenzothiazole (MBTH) and 2-phenylbenzothiazole (PhBTH) have been used as corrosion inhibitors for α-brass in stirred 0.1 M HClO4. The methods of investigation include weight loss, Tafel and linear polarizations and electrochemical impedance spectroscopy. The order of inhibition efficiency (%E) was calculated and the values obtained has indicated the sequence of inhibition efficiency was found to be BTH < MeBTH < ABTH < PhBTH < MBTH. The calculated values of thermodynamic parameters support this order. The inhibitors were found to suppress the corrosion rate by the formation of films which were identified by IR, SEM and EDAX techniques.


2011 ◽  
Vol 311-313 ◽  
pp. 657-661
Author(s):  
Xiao Hong Huang ◽  
Sheng Tao Zhang ◽  
Lian Yue Hu

This paper investigates the Isoniazid as chemical corrosion inhibitors for brass in 3.0% NaCl solution of different pH, employing polarization curves, electrochemical impedance spectroscopy(EIS), weight loss, and SEM. It is found that the inhibition efficiency of Isoniazid enhances with the increasing of the solution pH, from about 71% at pH 6.5 to 92% at pH 10.5. This improvement is attributed to the stronger adsorption of Isoniazid in alkaline solution, to prevent the occuring of the corrosion reaction of brass.


Author(s):  
Prateek Kulkarni ◽  
Charitha B. Ponnappa ◽  
Partha Doshi ◽  
Padmalatha Rao ◽  
Seetharaman Balaji

AbstractThe present study reports a sustainable source of lignin, from termite frass. Lignin was extracted using Klason’s method and subjected to polarization studies to check the inhibition efficiency and measured the electrochemical performance of the coated sample on the carbon steel using electrochemical impedance spectroscopy. The anticorrosive property was determined in a simulated corrosive environment (0.1 M NaOH and 0.5 M NaOH). The morphological analysis of the surface of both bare metal and the lignin-coated ones, before and after exposure to the corrosive environment, was recorded using atomic force microscopy (AFM), scanning electron microscopy (SEM), and energy-dispersive X-Ray spectroscopy (EDX). The lignin showed maximum inhibition efficiency at 600 ppm in 0.5 M NaOH solution. Moreover, the lignin coated on carbon steel exhibited about 70% corrosion inhibition efficiency as recorded by potentiodynamic polarization studies and electrochemical impedance spectroscopy. The AFM and SEM analyses further corroborated the protection of the metal surface from corrosion when coated with lignin. Hence, the study suggests lignin from termite frass as a sustainable biological source suitable for anticorrosive applications. Graphic abstract


2014 ◽  
Vol 629-630 ◽  
pp. 136-143
Author(s):  
J.S. Cai ◽  
C.C. Chen ◽  
J.Z. Liu ◽  
L. Shi

In this paper, the performance of two kinds of migrating corrosion inhibitors on the corrosion behavior of steel in concrete under wet-dry cycle was investigated. The wet-dry cycle duration on the open circuit, current density and impedance of carbon steel imbedded in concrete were analyzed by linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS). The results show that two kinds of migrating corrosion inhibitors can restrain corrosion of reinforcing steel, the corrosion efficiency of ZX was less more than MCI. Migrating corrosion inhibitor not only can improve carbon steel impedance, also can improve concrete resistant. Key words: migrating corrosion inhibitor;Cl-;reinforcing steel;linear polarization resistance;electrochemical impedance spectroscopy


RSC Advances ◽  
2021 ◽  
Vol 11 (41) ◽  
pp. 25314-25333
Author(s):  
Mai A. Khaled ◽  
Mohamed A. Ismail ◽  
Ahmed. A. El-Hossiany ◽  
Abd El-Aziz S. Fouda

This study targets the investigation of three pyrimidine derivatives (MA-1230, MA-1231, MA-1232) for the prevention of corrosion on copper in 1 M HNO3via weight loss (WL), potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS) techniques.


2014 ◽  
Vol 61 (5) ◽  
pp. 300-306 ◽  
Author(s):  
B.P. Markhali ◽  
R. Naderi ◽  
M. Sayebani ◽  
M. Mahdavian

Purpose – The purpose of this paper is investigate the inhibition efficiency of three similar bi-cyclic organic compounds, namely, benzimidazole (BI), benzotriazole (BTAH) and benzothiazole (BTH) on carbon steel in 1 M hydrochloric acid (HCl) solution. Organic inhibitors are widely used to protect metals in acidic media. Among abundant suggestions for acid corrosion inhibitors, azole compounds have gained attention. Design/methodology/approach – The inhibition efficiency of the three organic compounds was investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Findings – Superiorities of BTH and BTAH corrosion inhibitors were shown by EIS data and polarization curves. Moreover, the results revealed that BTAH and BTH can function as effective mixed-type adsorptive inhibitors, whereas no inhibition behavior was observed for BI. Both BTAH and BTH obeyed Longmuir adsorption isotherm. The results obtained from this isotherm showed that both inhibitors adsorbed on the specimen surface physically and chemically. The difference in inhibition efficiencies of BTAH, BTH and BI was related to the presence of nitrogen and sulfur hetero atoms on their molecular structures. Originality/value – This study evaluated inhibition efficiency of BI, BTAH and BTH using electrochemical methods. In addition, the study attempted to find inhibition mechanism of the inhibitors and to find modes of adsorption of the inhibitors, correlating effects of heteroatoms and inhibition efficiency.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2611
Author(s):  
Esther Udabe ◽  
Anthony Sommers ◽  
Maria Forsyth ◽  
David Mecerreyes

Chromate free corrosion inhibitors are searched for to mitigate the economic loss caused by mid-steel corrosion. Here, we show metal-free organic inhibitors having free coumarate anions that can be used either as direct corrosion inhibitors or incorporated into a polymer coating obtained by UV-curing. Four different ionic liquid monomers and polymer coatings with hexoxycoumarate anion and different polymerizable counter cations were investigated. Potentiodynamic polarization, electrochemical impedance spectroscopy, and surface analyses have verified their corrosion inhibition performance on a mild steel AS1020 surface. In the case of the coumarate ionic liquid monomers, the most promising inhibitor is the one coupled with the ammonium cation, showing an inhibition efficiency of 99.1% in solution followed by the imidazolium, pyridinium, and anilinium. Next, the ionic liquid monomers were covalently integrated into an acrylic polymer coating by UV-photopolymerization. In this case, the barrier effect of the polymer coating is combined with the corrosion inhibitor effect of the pendant coumarate anion. Here, the best polymer coatings are those containing 20% imidazolium and pyridinium cations, presenting a greater impedance in the EIS (Electrochemical Impedance Spectroscopy) measurements and less evidence of corrosion in the scribe tests. This article shows that the cationic moiety of coumarate based ionic liquids and poly(ionic liquid)s has a significant effect on their excellent corrosion inhibition properties for a mild steel surface exposed to aqueous chloride solutions.


Sign in / Sign up

Export Citation Format

Share Document